cosA-sinA=√2 then prove cosecA=2√2cosA
Answers
Answer:
ANSWER
We know the formula,
sin A = 1-2cosA
so,
sin²A = 1-4cosA+4cos²A
1-cos²A = 1-4cosA+4cos²A
0 = 5cos²A-4cosA
0 = cosA(5cosA-4)
cosA=0 or cosA=4/5
If cosA=0 then one possibility is sinA=1 and in this case 2sinA-cosA=2.
At first I thought cosA=0 and sinA=-1 was possible but this is not consistent with sinA+2cosA=1.
Let's consider the case cosA=4/5.
Then sinA = ±√(1-cos²A) = ±√(1-16/25) = ±3/5
If cosA=4/5 and sinA=3/5 then sinA + 2cosA doesn't equal 1.
If cosA=4/5 and sinA=-3/5 then sinA + 2cosA does equal 1 but 2sinA-cosA= -2.
So my conclusion is that if sinA+2cosA=1 then 2sinA-cosA can equal either 2 or -2.
Answer:
cosA+sinA=2–√cosAcosA+sinA=2cosA
Squaring,
cos2A+sin2A+2cosAsinA=2cos2Acos2A+sin2A+2cosAsinA=2cos2A
Using cos2A=1−sin2Acos2A=1−sin2A
1−sin2A+sin2A+2cosAsinA=2(1−sin2A)1−sin2A+sin2A+2cosAsinA=2(1−sin2A)
1+2cosAsinA=2−2sin2A1+2cosAsinA=2−2sin2A
2cosAsinA=1−2sin2A2cosAsinA=1−2sin2A
1−2cosAsinA=2sin2A1−2cosAsinA=2sin2A
cos2A+sin2A−2cosAsinA=2sin2Acos2A+sin2A−2cosAsinA=2sin2A
(cosA−sinA)2=2sin2A(cosA−sinA)2=2sin2A
cosA−sinA=±2–√sinAcosA−sinA=±2sinA
If you want answer in terms of the exact values,