Math, asked by RahulKumarMehta, 1 year ago

cosA-sinA/coA+sinA=sec2A-tan2A

Answers

Answered by AR17
73
Heya user !!!

Here's the answer you are looking for

Please see the attached file for your answer ☺️


★★ HOPE THAT HELPS ☺️ ★★
Attachments:

AR17: From LHS proceed from last step to first...
vaishalisharma5: ok
vaishalisharma5: thanks
AR17: welcome :-)
RahulKumarMehta: thanks
AR17: welcome
RahulKumarMehta: mera ak or sawal tha usko jara bataiye
AR17: wait
AR17: let me see
RahulKumarMehta: cosax+cosbx =0 general solution
Answered by harendrachoubay
35

\dfrac{\cos A-\sin A}{\cos A+\sin A}=\sec 2A-\tan 2A, proved.

Step-by-step explanation:

L.H.S. = \dfrac{\cos A-\sin A}{\cos A+\sin A}

Rationalising\cos A+\sin A, we get

=\dfrac{\cos A-\sin A}{\cos A+\sin A}\times \dfrac{\cos A-\sin A}{\cos A-\sin A}

=\dfrac{(\cos A-\sin A)^{2} }{\cos ^{2} A-\sin^{2} A}

=\dfrac{(\cos^{2}  A+\sin^{2} A-2\sin A\cos A) }{\cos 2A}

[∵ \cos ^{2} A-\sin^{2} A=\cos 2A ]

=\dfrac{1-\sin 2A }{\cos 2A}

[ ∵\cos^{2}  A+\sin^{2}=1 and \sin 2A=2\sin A\cos A]

=\dfrac{1}{\cos 2A} -\dfrac{\sin 2A}{\cos 2A}

=\sec 2A-\tan 2A

= R.H.S.. proved.

Similar questions