Math, asked by sandippalanposhan, 1 day ago

CosA/(SinA+CosB)+CosB/(SinB-CosA) =CosA/(SinA-CosB)+CosB/(SinB+CosA)


Answers

Answered by aditijavanjat
0

Step-by-step explanation:

CosA/(SinA+CosB)+CosB/(SinB-CosA) =CosA/(SinA-CosB)+CosB/(SinB+CosA)

CosA/(SinA+CosB)+CosB/(SinB-CosA) =CosA/(SinA-CosB)+CosB/(SinB+CosA)

CosA/(SinA+CosB)+CosB/(SinB-CosA) =CosA/(SinA-CosB)+CosB/(SinB+CosA)

Attachments:
Answered by XxDangerousQueenxX
4

Appropriate Question :-

Prove that,

\rm \:  \frac{cosA}{sinA + cosB} +  \frac{cosB}{sinB - cosA} =  \frac{cosA}{sinA - cosB} +  \frac{cosB}{sinB + cosA}  \\

\large\underline{\sf{Solution-}}

To solve this question, Let we Consider

\rm \:  \frac{cosA}{sinA + cosB} -  \frac{cosA}{sinA - cosB} \\

\rm \:  = cosA\bigg( \frac{1}{sinA + cosB} -  \frac{1}{sinA - cosB}\bigg) \\

\rm \:  = cosA\bigg( \frac{sinA - cosB - sinA - cosB}{(sinA + cosB)(sinA - cosB)}\bigg) \\

\rm \:  = cosA\bigg( \frac{-2 cosB}{ {sin}^{2}A -  {cos}^{2}B}\bigg) \\

\rm \:  =  \frac{-2 \: cosA \:  cosB}{ {sin}^{2}A -  {cos}^{2}B} \\

\color{green}\rm\implies \: \frac{cosA}{sinA + cosB} -  \frac{cosA}{sinA - cosB}  = \frac{-2 \: cosA \:  cosB}{ {sin}^{2}A -  {cos}^{2}B} -  - (1)\\

Now, Consider

\rm \:\frac{cosB}{sinB + cosA}  - \frac{cosB}{sinB - cosA} \\

\rm \: =  \: cosB\bigg(\frac{1}{sinB + cosA}  - \frac{1}{sinB - cosA}\bigg) \\

\rm \: =  \: cosB\bigg(\frac{sinB - cosA - sinB - cosA}{(sinB + cosA)(sinB - cosA)}\bigg) \\

\rm \: =  \: cosB\bigg(\frac{- 2cosA}{ {sin}^{2} B -  {cos}^{2}A}\bigg) \\

\rm \: =  \: \frac{- 2 \: cosA \: cosB}{ {sin}^{2} B -  {cos}^{2}A} \\

\rm \: =  \: \frac{- 2 \: cosA \: cosB}{(1 - {cos}^{2} B) -  (1 - {sin}^{2}A)} \\

\rm \: =  \: \frac{- 2 \: cosA \: cosB}{1 - {cos}^{2} B -  1 + {sin}^{2}A} \\

\rm \: =  \: \frac{- 2 \: cosA \: cosB}{ - {cos}^{2} B  + {sin}^{2}A} \\

\rm \:  =  \frac{-2 \: cosA \:  cosB}{ {sin}^{2}A -  {cos}^{2}B} \\

\color{green}\rm\implies \:\frac{cosB}{sinB + cosA}  - \frac{cosB}{sinB - cosA} = \frac{-2 \: cosA \:  cosB}{ {sin}^{2}A -  {cos}^{2}B} -  - (2) \\

So, from equation (1) and (2), we get

\rm \: \frac{cosA}{sinA + cosB} -  \frac{cosA}{sinA - cosB} = \frac{cosB}{sinB + cosA}  - \frac{cosB}{sinB - cosA} \\

which can be further rewritten as

\rm \:  \frac{cosA}{sinA + cosB} +  \frac{cosB}{sinB - cosA} =  \frac{cosA}{sinA - cosB} +  \frac{cosB}{sinB + cosA}  \\

Hence, Proved

\rule{190pt}{2pt}

Additional Information :-

\begin{gathered}\: \: \: \: \: \: \begin{gathered}\begin{gathered} \footnotesize{\boxed{ \begin{array}{cc} \small\underline{\frak{\pmb{ \red{More \: Formulae}}}} \\ \\ \bigstar \: \bf{sin(90 \degree - x) = cosx}\\ \\ \bigstar \: \bf{cos(90 \degree - x) = sinx}\\ \\ \bigstar \: \bf{tan(90 \degree - x) = cotx}\\ \\ \bigstar \: \bf{cot(90 \degree - x) = tanx}\\ \\ \bigstar \: \bf{cosec(90 \degree - x) = secx}\\ \\ \bigstar \: \bf{sec(90 \degree - x) = cosecx}\\ \\ \bigstar \: \bf{ {sin}^{2}x +  {cos}^{2}x = 1 } \\ \\ \bigstar \: \bf{ {sec}^{2}x -  {tan}^{2}x = 1  }\\ \\ \bigstar \: \bf{ {cosec}^{2}x -  {cot}^{2}x = 1 }\\ \: \end{array} }}\end{gathered}\end{gathered}\end{gathered}

Similar questions