(CosA+sinA)=root2cosA prove that (cosA-sinA) =root2sinA.
Answers
Answered by
7
Given that,
CosA+SinA=√2CosA
SinA=√2CosA-CosA
SinA=CosA(√2-1)
SinA=CosA(√2-1)×(√2+1)/(√2+1)
SinA=CosA(2-1)/(√2+1)
SinA=CosA/(√2+1)
SinA(√2+1)=CosA
√2SinA+SinA=CosA
√2SinA=CosA-SinA
CosA-SinA=√2SinA
Hence proved.
CosA+SinA=√2CosA
SinA=√2CosA-CosA
SinA=CosA(√2-1)
SinA=CosA(√2-1)×(√2+1)/(√2+1)
SinA=CosA(2-1)/(√2+1)
SinA=CosA/(√2+1)
SinA(√2+1)=CosA
√2SinA+SinA=CosA
√2SinA=CosA-SinA
CosA-SinA=√2SinA
Hence proved.
Similar questions