CosA + sinA= sinA+cosA
____ ____
1-tanA 1-cotA
Answers
Answered by
0
Step-by-step explanation:
We have,
(1+tan
2
A)
2
tanA
+
(1+cot
2
A)
2
cotA
=
(sec
2
A)
2
tanA
+
(cosec
2
A)
2
cotA
+
(cosec
2
A)
2
cotA
∵1+tan
2
A=sec
2
A and 1+cot
2
A=cosec
2
A
=
sec
4
A
cosA
sinA
+
cosec
4
A
sinA
cosA
=
cos
4
A
1
cosA
sinA
+
sin
4
A
1
sinA
cosA
=
cosA
sinA
×
1
cos
4
A
+
sinA
cosA
×
1
sin
4
A
=sinAcos
3
A+cosAsin
3
A
=sinAcosA(cos
2
A+sin
2
A) ∵cos
2
A+sin
2
A=1
=sinAcosA
Hence proved that ;
(1+tan
2
A)
2
tanA
+
(1+cot
2
A)
cotA
=sinAcosA
Similar questions