coscube10 +coscube110+coscube130=√3x, then 8x=?
Answers
Answered by
1
Answer:
Hi Dear !
cos³10 + cos³110 + cos³130
we know ,
Cos³ x + Cos ³ ( 120-x )+Cos³ ( 120+ x ) = (3/4)Cos 3x
here x = 10
now ,
= Cos10+ Cos³ (120-10)+ Cos³ (120+10)
= ( 3/4) Cos (3×10)
= (3/4)Cos30°
= (3/4)×(√3/2)
= (3√3)/8
4.3
19 votes
THANKS
26
Comments Report
guptasingh4564 Ambitious
So,The answer is \frac{3\sqrt{3} }{8}
Step-by-step explanation:
Given;
cos^{3} 10+cos^{3}110+cos^{3}130
We know,
cos^{3}x+cos^{3}(120-x)+cos^{3}(120+x)=\frac{3}{4} cos3x
∴cos^{3} 10+cos^{3}110+cos^{3}130
=cos^{3} 10+cos^{3}(120-10)+cos^{3}(120+10)
=\frac{3}{4}cos(3\times10)
=\frac{3}{4}cos(30)
=\frac{3}{4}\times \frac{\sqrt{3} }{2}
=\frac{3\sqrt{3} }{8}
∴ The answer is \frac{3\sqrt{3} }{8}
Similar questions