Math, asked by tripuraratankishore, 4 months ago

(cose theatre + cot theatre) square=1+cos theatre/1-cos theatre​

Answers

Answered by Anonymous
3

CORRECT QUESTION :-

 \\  \sf \: (cosec \theta  -   {cot\theta)}^{2}  =  \dfrac{1 + cos\theta}{1 - cos\theta}  \\  \\  \\

SOLUTION :-

 \\  \sf \: LHS =  (cosec\theta -  {cot\theta)}^{2} \\ \\  \boxed{ \bf \: cosec\theta =  \dfrac{1}{sin\theta} } \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \boxed{ \bf \:cot\theta =  \dfrac{cos\theta}{sin\theta}  } \\

 \\  \implies \sf \:  {\left( \dfrac{1}{sin\theta}  -  \dfrac{cos\theta}{sin\theta}  \right)}^{2}  \\  \\  \implies \sf \:   {\left( \dfrac{1 - cos\theta}{sin\theta}  \right)}^{2}  \\  \\  \implies \sf \:  \dfrac{(1 -  {cos\theta)}^{2} }{ {sin}^{2} \theta}  \\

 \\  \boxed{ \bf \: {cos}^{2} +  {sin}^{2}   = 1 } \\  \boxed{ \bf \: {sin}^{2} = 1 -  {cos}^{2}   } \\

 \\  \implies \sf \:  \dfrac{(1 -  {cos\theta)}^{2} }{1 -  {cos}^{2} \theta }  \\

 \\  \boxed{ \bf \: (a -  {b)}^{2}  = (a - b)(a - b)} \\  \\  \boxed{ \bf \:  {a}^{2} -  {b}^{2}  =  (a + b)(a - b)} \\

 \\  \implies \sf \:  \dfrac{ \cancel{(1 - cos\theta)}(1 - cos\theta)}{ \cancel{(1 - cos\theta)}(1 + cos\theta)}  \\  \\  \implies \sf \:  \dfrac{1 - cos\theta}{1 + cos\theta}  = RHS \:  \:  \:  \:   (proved) \\  \\

MORE IDENTITIES :-

★ 1 + tan²ø = sec²ø

★ 1 + cot²ø = cosec²ø

★ sin2ø = 2.sinø.cosø

★ cos2ø = cos²ø - sin²ø

ㅤㅤㅤ ㅤ= 2cos²ø - 1

ㅤㅤ ㅤㅤ= 1 - 2sin²ø

Answered by SugarCrash
54

Correct Question :

To Prove :

\: \:\:\:\:\;\red\bigstar \: (Cosec\theta + cot\theta )^2 = \dfrac{1+cos\theta}{1-cos\theta}

Solution :

  (Cosec\theta + cot\theta )^2 = \dfrac{1+cos\theta}{1-cos\theta}

Solving R.H.S.

 \large \dfrac{1+cos\theta}{1-cos\theta}

Rationalising

 \large \dfrac{1+cos\theta}{1-cos\theta} \times \dfrac{1+cos\theta}{1+cos\theta} \\

We know ,

\red\bigstar \color{blue}\boxed{ (a+b)(a-b)=a^2-b^2 }

Using this Identity,

 \large \dfrac{(1+cos\theta)^2}{1^2-cos^2 \theta} \\

We know,

\red\bigstar\boxed{ sin^2 \theta + cos^2 \theta = 1}

So,

\red\bigstar\boxed{ sin^2 = 1 - cos^2 \theta }

Using this Identity , we got :

   \implies \large \dfrac{(1+cos\theta)^2}{sin ^2 \theta} \\ \\ \large \implies \displaystyle  \left( \dfrac{1+cos\theta}{sin  \theta} \right) ^2

Splitting

 \large \implies \displaystyle  \left( \dfrac{1}{sin  \theta}+ \dfrac{cos\theta}{sin  \theta} \right) ^2

As we know,

  • 1/sinθ = cosecθ
  • sinθ/cosθ = cotθ

So,

 \large \implies \displaystyle  \left( cosec\theta + cot\theta \right) ^2

L.H.S = R.H.S

\huge \underline{\underline{Hence \: \: proved }}

{\fcolorbox{red}{blue}{\orange{\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\: SugarCrash\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:}}} 

Attachments:
Similar questions