Math, asked by indhumathi1, 1 year ago

cosec 15°+sec 15°=????


Linny1: 2(root 6-root2)

Answers

Answered by pinquancaro
53

Answer:

\csc 15^\circ+\sec 15^\circ=2\sqrt{6}

Step-by-step explanation:

Given : Expression \csc 15^\circ+\sec 15^\circ

To find : Solve the expression ?

Solution :

\csc 15^\circ+\sec 15^\circ

=\frac{1}{\sin15^\circ}+\frac{1}{\cos15^\circ}

=\frac{\cos15^\circ+\sin15^\circ}{\sin15^\circ\cos15^\circ}

Multiply and divide by \frac{1}{\sqrt{2}}

=\frac{\frac{1}{\sqrt{2}}\cos15^\circ+\frac{1}{\sqrt{2}}\sin15^\circ}{\frac{1}{\sqrt{2}}\sin15^\circ\cos15^\circ}

=\frac{\frac{1}{\sqrt{2}}\cos15^\circ+\frac{1}{\sqrt{2}}\sin15^\circ}{\frac{1}{\sqrt{2}}\sin15^\circ\cos15^\circ}

In numerator we apply \sin A\cos B+\cos A\sin B=\sin(A+B)

In denominator we apply 2\sin A\cos A=\sin 2A

=\frac{\sin(45+15)}{\frac{1}{2\sqrt{2}}\sin30^\circ}

=\frac{2\sqrt{2}\sin(60)}{\sin30^\circ}

=\frac{2\sqrt{2}\times \frac{\sqrt3}{2}}{\frac{1}{2}}

=2\sqrt{6}

Therefore, \csc 15^\circ+\sec 15^\circ=2\sqrt{6}

Answered by mahadevmuthu083
0

Answer:

inches8ye7tdt7s46wrw4w4erstdrste4w3s7rw7e

Similar questions