Math, asked by nirgun1234, 10 months ago

cosec 2 theta +sec 2 theta/cosec2theta-sec2theta=1+tan2 theta/1-tan2 theta

Answers

Answered by Anonymous
9

\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \boxed{ \boxed{\boxed { \huge  \mathcal\red{ solution}}}}

\underline{\red{\textbf{TO PROVE}}}

\implies \boxed{\bf\frac{cosec2\theta+sec2\theta}{cosec2\theta-sec2\theta}=\bf\frac{1+tan2\theta}{1-tan2\theta}}

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

\star\red{\textbf{Proving}}

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

\textbf{L.H.S.}=\bf\frac{cosec2\theta+sec2\theta}{cosec2\theta-sec2\theta}\\

=\bf\frac{\frac{1}{sin2\theta}+\frac{1}{cos2\theta}}{\frac{1}{sin2\theta}-\frac{1}{cos2\theta}}\\

=\Large{\bf\frac{\frac{cos2\theta+sin2\theta}{sin2\theta cos2\theta}}{\frac{cos2\theta-sin2\theta}{sin2\theta cos2\theta}}}\\

=\bf\frac{cos2\theta+sin2\theta}{cos2\theta-sin2\theta}\times \frac{\cancel{sin2\theta cos2\theta}}{\cancel{sin2\theta cos2\theta}}\\

=\Large{\bf\frac{\frac{cos2\theta+sin2\theta}{cos2\theta}}{\frac{cos2\theta-sin2\theta}{cos2\theta}}}\\ [\blue{\bf\textit{dividing by}\:cos2\theta\textit{on both sides}}]

=\Large{\bf\frac{\frac{\cancel{cos2\theta}}{\cancel{cos2\theta}}+\frac{sin2\theta}{cos2\theta}}{\frac{\cancel{cos2\theta}}{\cancel{cos2\theta}}-\frac{sin2\theta}{cos2\theta}}}\\

=\Large{\bf\frac{1+tan2\theta}{1-tan2\theta}=\textbf{R.H.S.}}\:\:(proved)

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

\underline{ \huge\mathfrak{hope \: this \: helps \: you}}

\mathcal{ \#\mathcal{answer with quality  }\:  \:  \&  \:  \: \#BAL }

Answered by jitumahi435
2

To prove that: \dfrac{\csc^ 2 \theta +\sec^ 2 \theta}{\csc^ 2 \theta -\sec^ 2 \theta} =\dfrac{1+\tan^2 \theta}{1-\tan^2 \theta} .

L.H.S. = \dfrac{\csc^ 2 \theta +\sec^ 2 \theta}{\csc^ 2 \theta -\sec^ 2 \theta}

Using the trigonometric identity:

\csc^ 2 \theta = \dfrac{1}{\sin^ 2 \theta }  and \sec^ 2 \theta = \dfrac{1}{\cos^ 2 \theta}

= \dfrac{\dfrac{1}{\sin^ 2 \theta } +\dfrac{1}{cos^ 2 \theta} }{\dfrac{1}{\sin^ 2 \theta } -\dfrac{1}{cos^ 2 \theta}}

Taking LCM of denominator part, we get

=\dfrac{\dfrac{\cos^ 2 \theta+\sin^ 2 \theta}{\sin^ 2 \theta\cos^ 2 \theta } }{\dfrac{\cos^ 2 \theta-\sin^ 2 \theta}{\sin^ 2 \theta\cos^ 2 \theta }}

=\dfrac{\cos^ 2 \theta+\sin^ 2 \theta }{\cos^ 2 \theta-\sin^ 2 \theta}

Using the trigonometric identity:|

\cos^ 2 \theta+\sin^ 2 \theta = 1

=\dfrac{1 }{\cos^ 2 \theta-\sin^ 2 \theta}

R.H.S. = \dfrac{1+\tan^2 \theta}{1-\tan^2 \theta}

= \dfrac{1+\dfrac{\sin^2 \theta}{\cos^2 \theta} }{1-\dfrac{\sin^2 \theta}{\cos^2 \theta}}

=\dfrac{\dfrac{\cos^ 2 \theta+\sin^ 2 \theta}{\cos^ 2 \theta } }{\dfrac{\cos^ 2 \theta-\sin^ 2 \theta}{\cos^ 2 \theta }}

=\dfrac{\cos^ 2 \theta+\sin^ 2 \theta }{\cos^ 2 \theta-\sin^ 2 \theta}

Using the trigonometric identity:|

\cos^ 2 \theta+\sin^ 2 \theta = 1

=\dfrac{1 }{\cos^ 2 \theta-\sin^ 2 \theta}

∴ L.H.S. = R.H.S. =\dfrac{1 }{\cos^ 2 \theta-\sin^ 2 \theta}, proved.

Thus, \dfrac{\csc^ 2 \theta +\sec^ 2 \theta}{\csc^ 2 \theta -\sec^ 2 \theta} =\dfrac{1+\tan^2 \theta}{1-\tan^2 \theta}, proved.

Similar questions