Cosec 4A + cosec 8A + cosec 16 A = cot 2A-cot 16.
Answers
Answered by
1
Step-by-step explanation:
Cosec2A+Cosec4A+Cosec8A
1/sin2A+1/sin4A+1/Sin8A. i.e (we know sinx = 1/cosecx )
1/sin2A+1/2sin2A.cos2A+1/2sin4A.cos4A
1/sin2A+1/2sin2A.cos2A+1/2sin2Acos2A.cos4A
(1/sin2A)[1++1/2cos2A+1/cos2A.cos4A]
(1/sin2A)[cos4Acos2A+cos4A+1]/cos2Acos4A
(1/sin2A)[cos4Acos2A+2cos^2 2A-1+1]/cos2Acos4A
(1/sin2A)[cos4Acos2A+2cos^2 2A]/cos2Acos4A
(Cos2A)[cos4A+2cos2A]/cos4ASin2A
(Cos2A)[2cos^2 2A-1+2cos2A]/cos4ASin2A
Cot2A [2Cos2A (cos2A+1)-1]/cos4A
=R.H.S
IF YOU LIKE MY ANSWER SO PLEASE MARK ME AS BRAINLIEST!
PLEASE PLEASE PLEASE PLEASE!
IF YOU MARK ME AS BRAINLIEST SO I WILL FOLLOW YOU!
PLEASE PLEASE PLEASE PLEASE!
Similar questions