Math, asked by abhinkrishnan36, 11 months ago

cosec(5x+1) find d/dx​

Answers

Answered by lAravindReddyl
12

Answer:-

\dfrac{d[cosec(5x+1) ]}{dx} = -5 cosec (5x+1) . \: cot (5x+1)

Explanation:-

Given

cos(5x+1)

To Find

Derivative of the given expression

Solution

w.k.t,

\dfrac{d(cosec \:x)}{dx} = - cosec \:x . \: cot x

\dfrac{d[cosec(5x+1) ]}{dx} = - cosec (5x+1) . \: cot (5x+1) . 5

\dfrac{d[cosec(5x+1) ]}{dx} = -5 cosec (5x+1) . \: cot (5x+1)

Answered by Anonymous
0

 \underline{ \sf \fcolorbox{red}{pink}{ \huge{Solution :)}}}

Given ,

The function is y = cosec(5x + 1)

 \sf  \fbox{\star } \: \frac{dy}{dx}  =  \frac{d \{cosec(5x + 1) \}}{dx}

By using chain rule , we get

 \sf \mapsto  \frac{dy}{dx}  = - cosec(5x + 1)cot(5x + 1)  \times \frac{d(5x + 1)}{dx} \\  \\ \sf \mapsto  \frac{dy}{dx}  = - cosec(5x + 1)cot(5x + 1)  \times 5  + 0 \\  \\ \sf \mapsto   \frac{dy}{dx}  = - 5 \: cosec(5x + 1)cot(5x + 1)

Hence , the derivative of given function i.e cosec(5x + 1) is -5cosec(5x + 1)cot(5x + 1)

_____________ Keep smiling

Similar questions