Cosec(75°+theta)-sec(15-theta)-tan(55+theta)+cos(35-theta)
Answers
Answered by
5
cosec (75° + θ) – sec (15° – θ) – tan (55° + θ) + cot (35° – θ)]
= [sec(90° - 75° - θ) - sec (15° – θ) – tan (55° + θ) + tan (90° - 35° + θ)]
= [sec (15° – θ) – sec (15° – θ) – tan (55° + θ) + tan (55° + θ)]
= 0
Answer: (B) 0
cos(α + β) = 0 => α + β = π/2 => α = π/2 - β
=> sin(α - β) = sin(π/2 - 2β) = cos2β
Answer : (B) cos2β
Let cos9α = sinα = k
=> sin9α = √(1-k^2) and cosα = √(1-k^2)
and cos10α = cos9α cosα - sin9α sinα = k√(1-k^2) - k√(1-k^2) = 0
=> 10α = π/2
=> 5α = π/4
=> tan(5α) = 1
Similar questions