Math, asked by ravigupta2121, 11 months ago

cosec A (1 + cos A) (cosec A-cot A) = 1​

Answers

Answered by kaushik05
28

 \boxed{ \huge{\mathfrak{solution}}}

To prove :

 \boxed{   \purple{\bold{\csc \alpha  (1 +  \cos \alpha)( \csc \alpha -  \cot \alpha) = 1}}}

LHS:

 \leadsto   \csc  \alpha (1 +  \cos( \alpha ) )( \frac{1}{ \sin( \alpha )  }   -  \frac{ \cos( \alpha ) }{ \sin( \alpha ) } ) \\  \\  \leadsto \:  \csc( \alpha ) (1 +  \cos( \alpha )) ( \frac{1 -  \cos( \alpha ) }{ \sin( \alpha ) })  \\  \\  \leadsto \:  \frac{1}{ \sin( \alpha ) } (1 +  \cos( \alpha ) )( \frac{1 -  \cos( \alpha ) }{ \sin( \alpha ) } ) \\  \\  \leadsto \:   \frac{1 -  { \cos}^{2}  (\alpha )}{ { \sin}^{2} (\alpha) }  \\  \\  \leadsto \:  \frac{ { \sin}^{2} \alpha  }{ { \sin}^{2} \alpha  }  \\  \\  \leadsto \:   \cancel{ \frac{ { \sin}^{2}  \alpha}{ { \sin}^{2}  \alpha }} 1 \\  \\  \leadsto \: 1

LHS=RHS

  \huge\boxed{  \green{\boxed{ \bold{proved}}}}

Answered by RvChaudharY50
96

{\large\bf{\mid{\overline{\underline{To\:Prove:-}}}\mid}}

  • cosecA(1 + cosA)(cosecA-cotA = 1

\Large\bold\star\underline{\underline\textbf{Formula\:used}}

  • Cosec A = 1/sin A
  • cot A = Cos A / sin A
  • (1 - Cos²A) = sin²A
  • (a+b)(a-b) = (a² - b²)

\Large\underline{\underline{\sf{Solution}:}}

 \red{using \: all \: above \: formula \: in} \:  \\  \green{LHS} \: we \: get  = \:  \:

cosecA(1 + cosA)(cosecA-cotA) \\  \\ \red{\boxed\implies} \:  \frac{1}{ \sin A}(1 + cosA) \: ( \frac{1}{\sin A}   -   \frac{ \cos A }{ \sin A  } ) \\  \\ \red{\boxed\implies} \:  \frac{1}{ \sin A}(1 + cosA) \:( \frac{1 - \cos A}{\sin A} ) \\  \\ \red{\boxed\implies} \:  \frac{(1 -  {cos}^{2}A )}{ {sin}^{2} A }  \\  \\ \red{\boxed\implies} \:  \:  \:  \:  \frac{ \cancel{{sin}^{2} A}}{ \cancel{{sin}^{2} A}}  \\  \\ \red{\boxed\implies} \:  \: \pink{\large\boxed{\boxed{\bold{1 = RHS }}}} \:

 \huge\boxed{\bold{Hence, Proved}}

Similar questions