Math, asked by kritikatripathy70169, 10 months ago

cosec A(1+ cos A)( cosec A- cot A)=1

Answers

Answered by Anonymous
6

Question :

Prove that,

\sf{cosecA (1+cosA)(cosecA-cotA)=1}

Solution :

Taking L.H.S,

\sf{cosecA (1+cosA)(cosecA-cotA)}

\implies\sf{\dfrac{1}{sinA}(1+cosA)(\dfrac{1}{sinA}-\dfrac{cosA}{sinA})}

\implies\sf{\dfrac{1}{sinA}(1+cosA)(\dfrac{1-cosA}{sinA})}

\implies\sf{\dfrac{(1+cosA)(1-cosA)}{sin^2A}}

Use the identity : (a+b)(a-b)= -

\implies\sf{\dfrac{1-cos^2A}{sin^2A}}

Use the identity : sin²A = 1 - cos²A

\implies\sf{\dfrac{sin^2A}{sin^2A}}

\implies\sf{1}

L.H.S = R.H.S [ Proved]

__________________________

More identities :-

• sin²A + cos²A = 1

• 1 + tan²A = sec²A

• 1 + cot²A = cosec²A

• cos²A - sin²A = cos2A

• sinA = \sf{\sqrt{1-cos^2A}}

• sin2A = 2 sinA cosA

• cos2A = 2cos²A - 1

• 1 - cos2A = 2 sin²A

__________________________

Answered by silentlover45
0

  \huge \mathfrak{Prove \: That:-}

\implies cosec A(1+ cos A)( cosec A- cot A)=1

\large\underline\mathrm{Solution}

\large\underline\mathrm{LHS}

\implies cosec A(1+ cos A)( cosec A- cot A)

\implies 1/sinA (1 + cosA)(1 - cosA / sinA)

\implies (1 + cosA)(1 + cosA)/sin²A. [(a + b)(a - b) = a² - b²

\implies 1 + cos²A/sin²A. [(a + b)(a - b) = a² - b²

\implies sin²A/sin²A. [sin²A = 1 + cos²A]

\large\underline\mathrm{LHS \: = \: RHS. \: Proved.}

  \huge \mathfrak{Basic \: Formula:-}

\implies sin²A + cos²A = 1

\implies 1 + tan²A = sec²A

\implies cos²A - sin²A = cos2A

\implies sinA = √1 - cos²A

\implies 1 - cos2A = 2sin²A

\large\underline\mathrm{Hope \: it \: helps \: you \: plz \: mark \: me \: brainlist}

Similar questions