Math, asked by kanakchoukade16, 2 months ago

cosec a - 1+cot a /cot a+1-cosec a = 1 + cos a/ sin a ​

Answers

Answered by Anonymous
1

Hope it helps!! Mark this answer as brainliest if you found it useful and follow me for quick and accurate answers...

Attachments:
Answered by harshit5645
1

Answer:

Given :-

The perimeter of an isosceles triangle is 42 cm.

The ratio of the equal side to its base is 3 : 4.

To Find :-

What is the area of the triangle.

Formula Used :-

\clubsuit♣ Area Of Triangle by Heron's Formula :

\begin{gathered}\footnotesize\mapsto \sf\boxed{\bold{\pink{Area_{(Triangle)} =\: \sqrt{s(s - a)(s - b)(s - c)}}}}\\\end{gathered}

Area

(Triangle)

=

s(s−a)(s−b)(s−c)

where,

s = Semi-Perimeter

a = First Side Of Triangle

b = Second Side Of Triangle

c = Third Side Of Triangle

Solution :-

Let,

\mapsto \bf First\: Side_{(Triangle)} =\: 3a\: cm↦FirstSide

(Triangle)

=3acm

\mapsto \bf Second\: Side_{(Triangle)} =\: 4a\: cm↦SecondSide

(Triangle)

=4acm

\mapsto \bf Third\: Side_{(Triangle)} =\: 3a\: cm↦ThirdSide

(Triangle)

=3acm

As we know that :

\begin{gathered}\footnotesize\bigstar\: \: \sf\boxed{\bold{\pink{Perimeter_{(Triangle)} =\: Sum\: of\: all\: sides}}}\: \: \bigstar\\\end{gathered}

Perimeter

(Triangle)

=Sumofallsides

Given :

Perimeter of triangle = 42 cm

According to the question by using the formula we get,

\implies \sf 42 =\: 3a + 4a + 3a⟹42=3a+4a+3a

\implies \sf 42 =\: 10a⟹42=10a

\implies \sf \dfrac{42}{10} =\: a⟹

10

42

=a

\implies \sf 4.2 =\: a⟹4.2=a

\implies \sf\bold{\purple{a =\: 4.2\: cm}}⟹a=4.2cm

Hence, the required sides of a triangle are :

❒ First Side Of Triangle :

\implies \sf First\: Side_{(Triangle)} =\: 3a\: cm⟹FirstSide

(Triangle)

=3acm

\implies \sf First\: Side_{(Triangle)} =\: (3 \times 4.2)\: cm⟹FirstSide

(Triangle)

=(3×4.2)cm

\implies \sf\bold{\green{First\: Side_{(Triangle)} =\: 12.6\: cm}}⟹FirstSide

(Triangle)

=12.6cm

❒ Second Side Of Triangle :

\implies \sf Second\: Side_{(Triangle)} =\: 4a\: cm⟹SecondSide

(Triangle)

=4acm

\implies \sf Second\: Side_{(Triangle)} =\: (4 \times 4.2)\: cm⟹SecondSide

(Triangle)

=(4×4.2)cm

\implies \sf\bold{\green{Second\: Side_{(Triangle)} =\: 16.8\: cm}}⟹SecondSide

(Triangle)

=16.8cm

❒ Third Side Of Triangle :

\implies \sf Third\: Side_{(Triangle)} =\: 3a\: cm⟹ThirdSide

(Triangle)

=3acm

\implies \sf Third\: Side_{(Triangle)} =\: (3 \times 4.2)\: cm⟹ThirdSide

(Triangle)

=(3×4.2)cm

\implies \sf\bold{\green{Third\: Side_{(Triangle)} =\: 12.6\: cm}}⟹ThirdSide

(Triangle)

=12.6cm

Now, we have to find the semi-perimeter of a triangle :

As we know that :

\begin{gathered}\footnotesize\bigstar\: \: \sf\boxed{\bold{\pink{Semi-Perimeter =\: \dfrac{Sum\: of\: all\: sides}{2}}}}\: \: \bigstar\\\end{gathered}

Semi−Perimeter=

2

Sumofallsides

Given :

First Side (a) = 12.6 cm

Second Side (b) = 16.8 cm

Third Side (c) = 12.6 cm

According to the question by using the formula we get

\implies \bf Semi-Perimeter =\: \dfrac{a + b + c}{2}⟹Semi−Perimeter=

2

a+b+c

\implies \sf Semi-Perimeter =\: \dfrac{12.6 + 16.8 + 12.6}{2}⟹Semi−Perimeter=

2

12.6+16.8+12.6

\implies \sf Semi-Perimeter =\: \dfrac{\cancel{42}}{\cancel{2}}⟹Semi−Perimeter=

2

42

\implies \sf\bold{\purple{Semi-Perimeter =\: 21\: cm}}⟹Semi−Perimeter=21cm

Now, we have to find the area of the triangle by using the Heron's Formula :

Given :

Semi-Perimeter (s) = 21 cm

First Side (a) = 12.6 cm

Second Side (b) = 16.8 cm

Third Side (c) = 12.6 cm

According to the question by using the formula we get,

\small\longrightarrow \sf Area_{(Triangle)} =\: \sqrt{21(21 - 12.6)(21 - 16.8)(21 - 12.6)}⟶Area

(Triangle)

=

21(21−12.6)(21−16.8)(21−12.6)

\small\longrightarrow \sf Area_{(Triangle)} =\: \sqrt{21(8.4)(4.2)(8.4)}⟶Area

(Triangle)

=

21(8.4)(4.2)(8.4)

\small\longrightarrow \sf Area_{(Triangle)} =\: \sqrt{21 \times 8.4 \times 4.2 \times 8.4}⟶Area

(Triangle)

=

21×8.4×4.2×8.4

\small\longrightarrow \sf Area_{(Triangle)} =\: \sqrt{6223.392}⟶Area

(Triangle)

=

6223.392

\small\longrightarrow \sf\bold{\red{Area_{(Triangle)} =\: 78.898\: cm^2}}⟶Area

(Triangle)

=78.898cm

2

{\small{\bold{\underline{\therefore\: The\: area\: of\: the\: triangle\: is\: 78.898\: cm^2\: .}}}}

∴Theareaofthetriangleis78.898cm

2

.

Similar questions