Math, asked by tejasviL, 10 months ago

cosec A
2+2tana
Cosec A
Cosec A-1
Losec Ati​

Attachments:

Answers

Answered by Brâiñlynêha
12

\underline{\bigstar{\sf Given:-}}

\bullet\sf \dfrac{CosecA}{CosecA-1}+\dfrac{CosecA}{CosecA+1}= 2+2tan^2A

\underline{\bigstar{\sf To \ Prove :-}}

  • We have to Prove the Given Trigonometric Identity !
  • Identity used

\boxed{\sf{\dag\ 1+cot^2A= Cosec^2A}}

\boxed{\sf{\dag\ a^2-b^2=(a+b)(a-b)}}

L.H.S

\dashrightarrow\sf \dfrac{CosecA}{CosecA-1}+\dfrac{CosecA}{Cosec A+1}\\ \\ \\ \dashrightarrow\sf \dfrac{CosecA(CosecA+1)+ CosecA(Cosec A-1)}{(CosecA-1)(CosecA+1)}\ \ \ \ \big[ By\ taking \ L.C.M \big] \\ \\ \\ \dashrightarrow\sf  \dfrac{Cosec^2A+\cancel{CosecA} + Cosec^2A-\cancel{CosecA}}{(CosecA)^2-(1)^2} \ \ \ \ \ \big[ \therefore\ \ (a+b)(a-b)=a^2-b^2\big]\\ \\ \\ \dashrightarrow\sf \dfrac{2Cosec^2A}{\cancel{1}+cot^2A\cancel{-1}}\ \ \ \ \ \big[ \dag\ 1+cot^2A=Cosec^2A\big]\\ \\ \\ \dashrightarrow\sf \dfrac{2(1+cot^2A)}{Cot^2A}\\ \\ \\ \dashrightarrow\sf \dfrac{ 2+2Cot^2A}{Cot^2A}\\ \\ \\ \dashrightarrow\sf \dfrac{2}{Cot^2A}+\dfrac{2\cancel{Cot^2A}}{\cancel{Cot^2A}}\\ \\ \\ \dashrightarrow\sf 2tan^2A+2 \ \ \ \ \Bigg[ \therefore\ \dfrac{1}{Cot A}= tanA\Bigg]\\ \\ \\ \dashrightarrow{\purple{\sf\ 2+2tan^2A = 2+2tan^2A}} \\ \\ \\ \dashrightarrow\sf L.H.S=R.H.S \ \ \ \ (hence\  Proved\ \  !! )

Answered by Anonymous
3

Answer:

here is your answer

please refer to the attachment

☺️☺️☺️☺️

Attachments:
Similar questions