Math, asked by srujitKumar, 9 months ago

cosec A/cosec-1+cosecA/cosecA+1=2secA​

Answers

Answered by SachinGupta01
9

Correct question:

 \\  \sf \implies  \boxed{\sf  \dfrac{ cosec \:  A }{cosec \:  A - 1}  + \dfrac{ cosec \:  A }{cosec \:  A  +  1} = 2 \sec^{2} A}

Solving LHS,

 \\  \sf \implies  {\sf  \dfrac{  \frac{1}{ \sin  A}  }{\frac{1}{\sin  A} - 1}   +  {\sf  \dfrac{  \frac{1}{ \sin  A}  }{\frac{1}{\sin  A}  + 1}}}

 \\  \sf \implies  {\sf  \dfrac{  \frac{1 }{ \sin  A}  }{\frac{1 -\sin  A }{\sin  A} }   +  {\sf  \dfrac{  \frac{1}{ \sin  A}  }{\frac{1 + \sin  A}{\sin  A} }}}

 \\   \sf\implies \sf \dfrac{1 }{  \cancel{\sin  A}}   \times  \dfrac{ \cancel{\sin  A}}{1 -\sin  A}  + \dfrac{1 }{  \cancel{\sin  A}}   \times  \dfrac{ \cancel{\sin  A}}{1  + \sin  A}

 \\   \sf\implies \sf  \dfrac{ 1}{1 -\sin  A}  + \dfrac{ 1}{1  + \sin  A}

 \\   \sf\implies \sf  \dfrac{(1  + \sin  A)  + (1 -\sin  A)}{(1 -\sin  A)(1  + \sin  A)}

 \\   \sf\implies \sf  \dfrac{1  + \sin  A + 1 -\sin  A}{1 -\sin^{2}   A}

 \\   \sf\implies \sf  \dfrac{2 }{   \cos^{2}  A}

 \\   \sf\implies \boxed{ \sf  2 \sec^{2} {A} }

  • LHS = RHS

HENCE PROVED

Attachments:
Similar questions