Math, asked by krishkhera2011pb30kn, 4 months ago

(Cosec A / Cosec A-1) + (Cosec A / Cosec A +1) = 2 Sec²A ​

Answers

Answered by TMarvel
4

Step-by-step explanation:

LHS

 \frac{ \csc (\alpha)  }{ \csc (\alpha)   - 1 }  +  \frac{ \csc (\alpha)  }{ \csc (\alpha)   + 1 }   \\  =     \frac{ \csc( \alpha )( \csc( \alpha ) + 1 )  +  \csc( \alpha )( \csc( \alpha ) - 1)  }{( \csc( \alpha ) - 1 )( \csc( \alpha ) + 1 )}  \\  =    \frac{ { \csc }^{2}( \alpha ) +  \csc( \alpha )  +   { \csc }^{2}( \alpha ) -  \csc( \alpha )   }{  { \csc}^{2}( \alpha ) - 1 }  \\  =    \frac{2  { \csc }^{2} ( \alpha ) }{ { \csc }^{2}( \alpha ) - 1 }  \\  =    \frac{2  { \csc}^{2} ( \alpha )}{  { \csc }^{2} ( \alpha )}  - 2 { \csc}^{2} ( \alpha )\\  =   2 - 2 { \csc}^{2} ( \alpha ) \\  =  2(1 -  { \csc }^{2}( \alpha ))  \\  =   2 { \sec }^{2}( \alpha  )

Identity used:

1 - csc²x = sec²x

SINCE LHS = RHS

HENCE PROVED

Similar questions