cosec A +cot A/ cosec A -cot A =(cosec A+ cot A)^2=1+2cot^2+2cosec A cot A
Answers
Answered by
8
Answer:
Proved below.
Step-by-step explanation:
From the properties of trigonometric ratios :
- 1 + cot^2 A = cosec^2 A
- Thus, cosec^2 A - cot^2 A = 1
In the question :
= > ( cosecA + cotA ) / ( cosecA - cotA )
Multiplying denominator as well as numerator by cosecA + cotA:
= > [ ( cosecA + cotA )( cosecA + cotA ) ] / [ ( cosecA - cotA )( cosecA + cotA ) ]
= > ( cosecA + cotA )^2 / ( cosec^2 A - cot^2 A ) { using ( a + b )( a - b ) = a^2 - b^2 }
= > ( cosecA + cotA )^2 { cosec^2 A - cot^2 A = 1 }
= > Proved, for 1.
= > ( cosecA + cotA )^2
= > cosec^2 A + cot^2 A + 2cosecAcotA
= > 1 + cot^2 A + cot^2 A + 2cosecAcotA { cosec^2 A = 1 + cot^2 A }
= > 1 + 2cot^2 A + 2cosecAcotA
Proved.
Answered by
8
❚ QuestioN ❚
✩ Prove that ,
❚ AnsWeR ❚
✺ 1'st Prove :-
✏ Multiplying the both numerator and denominator by
❮ as, ❯
✺ 2'nd Prove :-
✺ Therefore :-
(Proved)
Similar questions