Math, asked by janviyadav1127, 11 months ago

cosec A +cot A/ cosec A -cot A =(cosec A+ cot A)^2=1+2cot^2+2cosec A cot A​

Answers

Answered by abhi569
8

Answer:

Proved below.

Step-by-step explanation:

From the properties of trigonometric ratios :

  • 1 + cot^2 A = cosec^2 A
  • Thus, cosec^2 A - cot^2 A = 1

In the question :

= > ( cosecA + cotA ) / ( cosecA - cotA )

Multiplying denominator as well as numerator by cosecA + cotA:

= > [ ( cosecA + cotA )( cosecA + cotA ) ] / [ ( cosecA - cotA )( cosecA + cotA ) ]

= > ( cosecA + cotA )^2 / ( cosec^2 A - cot^2 A ) { using ( a + b )( a - b ) = a^2 - b^2 }

= > ( cosecA + cotA )^2 { cosec^2 A - cot^2 A = 1 }

= > Proved, for 1.

= > ( cosecA + cotA )^2

= > cosec^2 A + cot^2 A + 2cosecAcotA

= > 1 + cot^2 A + cot^2 A + 2cosecAcotA { cosec^2 A = 1 + cot^2 A }

= > 1 + 2cot^2 A + 2cosecAcotA

Proved.

Answered by Anonymous
8

❚ QuestioN ❚

Prove that ,

\dfrac{\cosec A+\cot A}{\cosec A-\cot A}=(\cosec A+\cot A)^2\\=1+2\cot^2A+2\cosec A\cot A

❚ AnsWeR ❚

\setlength{\unitlength}{1.0 cm}}\begin{picture}(12,4)\thicklines\put(1,1){\line(1,0){6.5}}\put(1,1.1){\line(1,0){6.5}}\end{picture}

1'st Prove :-

L.H.S.=\dfrac{\cosec A+\cot A}{\cosec A-\cot A}

Multiplying the both numerator and denominator by  (\cosec A+\cot A)

L.H.S.=\dfrac{(\cosec A+\cot A)(\cosec A+\cot A)}{(\cosec A-\cot A)(\cosec A+\cot A)}

L.H.S.=\dfrac{(\cosec A+\cot A)^2}{\cosec^2 A-\cot^2 A}

L.H.S.=\dfrac{(\cosec A+\cot A)^2}{1}

as, \cosec^2 A-\cot^2 A=1

L.H.S.=(\cosec A+\cot A)^2

L.H.S.=R.H.S.\:\red{(proved)}

✺ 2'nd Prove :-

L.H.S=(\cosec A+\cot A)^2

L.H.S=\cosec^2 A+\cot^2 A+2\cosec A\cot A

L.H.S=(1+\cot^2 A)+\cot^2 A+2\cosec A\cot A

L.H.S=1+2\cot^2 A+2\cosec A\cot A

L.H.S=R.H.S.\:\:\red{(proved)}

✺ Therefore :-

\dfrac{\cosec A+\cot A}{\cosec A-\cot A}=(\cosec A+\cot A)^2\\=1+2\cot^2A+2\cosec A\cot A

(Proved)

\setlength{\unitlength}{1.0 cm}}\begin{picture}(12,4)\thicklines\put(1,1){\line(1,0){6.5}}\put(1,1.1){\line(1,0){6.5}}\end{picture}

Similar questions