cosec a(sec a-1)-cot a(1+cos a)=tan a-sin a how to prove
Answers
Answered by
1
cosec a(sec a - 1) - cot a(1 - cos a) = tan a - sin a
so LHS
= cosec a(sec a - 1) - cot a(1 + cos a)
= cosec a . sec a - cosec a - cot a + cot a . cos a
= (1 - cos a - cos² a + cos³ a)/(sin a. cos a )
= {(1- cos² a) - cos a(1 - cos² a)}/(sin a. cos a )
= sin a{sin a - cos a(sin a)}/(sin a . cos a)
= sin a / cos a - cos a . sin a / cos a
= tan a - sin a proved
so LHS
= cosec a(sec a - 1) - cot a(1 + cos a)
= cosec a . sec a - cosec a - cot a + cot a . cos a
= (1 - cos a - cos² a + cos³ a)/(sin a. cos a )
= {(1- cos² a) - cos a(1 - cos² a)}/(sin a. cos a )
= sin a{sin a - cos a(sin a)}/(sin a . cos a)
= sin a / cos a - cos a . sin a / cos a
= tan a - sin a proved
Similar questions