Math, asked by fakhrahaziz27, 8 months ago

(Cosec A- Sin A) (Sec A - Cos A) = 1/ tan A + cot A​

Answers

Answered by Brâiñlynêha
9

Given :-

\bullet \sf\ \  (CosecA-SinA)(SinA-CosA)=\dfrac{1}{tanA+cotA}

Solution :-

  • Taking LHS -

\bullet\sf\ CosecA= \dfrac{1}{SinA}\ \ ;\ \bullet\sf\ \ SecA=\dfrac{1}{CosA}\\ \\ \\ :\implies\sf\ \bigg\{\dfrac{1}{SinA}-SinA\bigg\}\bigg\{\dfrac{1}{CosA}-CosA\bigg\}\\ \\ \\ :\implies\sf\ \bigg\{\dfrac{1-Sin^2A}{SinA}\bigg\}\bigg\{\dfrac{1-Cos^2A}{CosA}\bigg\}\\ \\ \\ \therefore\underline{\sf\ Sin^2\theta+Cos^2\theta=1}\\ \\ \\ :\implies\sf\ \bigg\{\dfrac{\cancel{Cos^2A}}{\cancel{SinA}}\bigg\}\times \bigg\{\dfrac{\cancel{Sin^2A}}{\cancel{CosA}}\bigg\}\\ \\ \\ :\implies\sf\ \underline{\boxed{\purple{\sf\ \ CosA\ SinA}}}------eq.(i)

_____________________________

  • Now RHS :-

:\implies\sf\ \dfrac{1}{TanA+CotA}\\ \\ \\ \bullet\sf\ \ tanA=\dfrac{SinA}{CosA}\ \;\ \bullet\sf\ CotA=\dfrac{CosA}{SinA}\\ \\ \\ :\implies\sf\ \Bigg\{\dfrac{1}{\frac{SinA}{CosA}+\frac{CosA}{SinA}}\Bigg\}\\ \\ \\ :\implies\sf\ \Bigg\{\dfrac{1}{\frac{Sin^2A+Cos^2A}{SinACosA}}\Bigg\}\\ \\ \\ :\implies\sf\ 1\times \bigg\{\dfrac{SinACosA}{Sin^2A+Cos^2A}\bigg\}\\ \\ \\ :\implies\sf\ \bigg\{\dfrac{SinACosA}{1}\bigg\}\\ \\ \\ :\implies\sf\ \underline{\boxed{\red{\sf\ \ CosA\ SinA}}}------eq.(ii)

  • From equation (i) and (ii)

\sf\ \ LHS=RHS\ \ \ \ Hence\ Proved !!

Answered by faizalempire2001
0

Answer:

........................

Similar questions