Math, asked by rakshitakhandelwal14, 5 months ago

(cosec A - sin A)(sec A - cos A)= 1/
tan A + cot A​

Answers

Answered by Mathopathic
1

Answer:

Hence Proved.

Please mark me as the Brainliest

Attachments:
Answered by varadad25
7

Answer:

\displaystyle{\boxed{\red{\sf\:(\:cosec\:A\:-\:\sin\:A\:)\:(\:\sec\:A\:-\:\cos\:A\:)\:=\:\dfrac{1}{\tan\:A\:+\:\cot\:A}}}}

Step-by-step-explanation:

We have given a trigonometric equation.

We have to prove that equation.

\displaystyle{\sf\:(\:cosec\:A\:-\:\sin\:A\:)\:(\:\sec\:A\:-\:\cos\:A\:)\:=\:\dfrac{1}{\tan\:A\:+\:\cot\:A}}

\displaystyle{\sf\:RHS\:=\:\dfrac{1}{\tan\:A\:+\:\cot\:A}}

\displaystyle{\implies\sf\:RHS\:=\:\dfrac{1}{\dfrac{\sin\:A}{\cos\:A}\:+\:\dfrac{\cos\:A}{\sin\:A}}\:\quad\:\:\:-\:-\:-\:\left[\:\because\:\tan\:A\:=\:\dfrac{\sin\:A}{\cos\:A}\:\&\:\cot\:A\:=\:\dfrac{\cos\:A}{\sin\:A}\:\right]}

\displaystyle{\implies\sf\:RHS\:=\:\dfrac{1}{\dfrac{\sin\:A\:\times\:\sin\:A\:+\:\cos\:A\:\times\:\cos\:A}{\sin\:A\:\cos\:A}}}

\displaystyle{\implies\sf\:RHS\:=\:\dfrac{1}{\dfrac{\sin^2\:A\:+\:\cos^2\:A}{\sin\:A\:\cos\:A}}}

\displaystyle{\implies\sf\:RHS\:=\:\dfrac{1}{\dfrac{1}{\sin\:A\:\cos\:A}}\:\quad\:\:-\:-\:-\:[\:\because\:\sin^2\:A\:+\:\cos^2\:A\:=\:1\:]}

\displaystyle{\implies\sf\:RHS\:=\:\dfrac{1}{1}\:\times\:\sin\:A\:\cos\:A}

\displaystyle{\implies\sf\:RHS\:=\:\sin\:A\:\cos\:A}

\displaystyle{\implies\sf\:RHS\:=\:\sin\:A\:\cos\:A\:\times\:\left(\:\dfrac{\sin\:A\:\cos\:A}{\sin\:A\:\cos\:A}\:\right)\:\:-\:-\:-\:[\:Multiplying\:and\:dividing\:by\:\sin\:A\:\cos\:A\:]}

\displaystyle{\implies\sf\:RHS\:=\:\dfrac{\sin^2\:A\:\cos^2}{\sin\:A\:\cos\:A}}

\displaystyle{\implies\sf\:RHS\:=\:\left(\:\dfrac{\sin^2\:A}{\sin\:A}\:\right)\:\left(\:\dfrac{\cos^2\:A}{\cos\:A}\:\right)}

\displaystyle{\implies\sf\:RHS\:=\:\left(\:\dfrac{1\:-\:\cos^2\:A}{\sin\:A}\:\right)\:\left(\:\dfrac{1\:-\:\sin^2\:A}{\cos\:A}\:\right)\:\quad\:\:-\:-\:-\:[\:\because\:\sin^2\:A\:+\:\cos^2\:A\:=\:1\:]}

\displaystyle{\implies\sf\:RHS\:=\:\left(\:\dfrac{1}{\sin\:A}\:-\:\sin\:A\:\right)\:\left(\:\dfrac{1}{\cos\:A}\:-\:\cos\:A\:\right)}

\displaystyle{\implies\sf\:RHS\:=\:(\:cosec\:A\:-\:\sin\:A\:)\:\left(\:\dfrac{1}{\cos\:A}\:-\:\cos\:A\:\right)\:\:-\:-\:-\:\left[\:\because\:cosec\:A\:=\:\dfrac{1}{\sin\:A}\:\right]}

\displaystyle{\implies\sf\:RHS\:=\:(\:cosec\:A\:-\:\sin\:A\:)\:(\:\sec\:A\:-\:\cos\:A\:)\:\:-\:-\:-\:\left[\:\because\:\sec\:A\:=\:\dfrac{1}{\cos\:A}\:\right]}

\displaystyle{\implies\sf\:LHS\:=\:(\:cosec\:A\:-\:\sin\:A\:)\:(\:\sec\:A\:-\:\cos\:A\:)}

\displaystyle{\therefore\:\boxed{\red{\sf\:LHS\:=\:RHS}}}

Hence proved!

Similar questions