Math, asked by monikasingh6800, 9 months ago

(cosec A-sin A) (sec A -cos A) (tan A + cot A)​

Answers

Answered by sandy1816
3

Answer:

</p><p>{\green{\underline{\underline{\huge{\mathfrak\yellow{your\:answer\:attached\:in\:the\:photo}}}}}}

Attachments:
Answered by abhi178
1

Given :The trigonometric expression is ...

(cosecA-sinA)(secA-cosA)(tanA+cotA)

To find : the numerical value of given trigonometric expression.

solution :

(cosecA-sinA)(secA-cosA)(tanA+cotA)

=\left(\frac{1}{sinA}-sinA\right)\times\left(\frac{1}{cosA}-cosA\right)\times\left(\frac{sinA}{cosA}+\frac{cosA}{sinA}\right)

=\left(\frac{1-sin^2A}{sinA}\right)\times\left(\frac{1-cos^2A}{cosA}\right)\times\frac{sin^2A+cos^2A}{sinAcosA}

we know, sin²x + cos²x = 1

so, 1 - sin²A = cos²A

1 - cos²A = sin²A

and sin²A + cos²A = 1

=\left(\frac{cos^2A}{sinA}\right)\times\left(\frac{sin^2A}{cosA}\right)\times\left(\frac{1}{sinAcosA}\right)

=\frac{cos^2Asin^2A}{sinAcosA}\frac{1}{sinAcosA}

=\frac{sin^2Acos^2A}{sin^2Acos^2A}=1

Therefore the value of (cosecA-sinA)(secA-cosA)(tanA+cotA) is 1.

Similar questions