Math, asked by palak0509, 7 months ago

(cosec a - sin a) (seca- cos a)(tana + cot a) = 1
prove using identities​

Answers

Answered by Ataraxia
7

To Prove :-

\sf (cosecA-sinA)(secA-cosA)(tanA+cotA) = 1

Solution :-

\sf L.H.S = (cosecA-sinA)(secA-cosA)(tanA+cotA)

\bullet \bf \ cosecA = \dfrac{1}{sinA} \\\\\bullet \ secA  = \dfrac{1}{cosA} \\\\\bullet \ cotA = \dfrac{1}{tanA}

        = \sf \left( \dfrac{1}{sinA}-sinA} \right) \left( \dfrac{1}{cosA} -cosA \right) \left( tanA + \dfrac{1}{tanA} \right) \\\\= \left( \dfrac{1-sin^2A} {sinA} \right) \left( \dfrac{1-cos^2A}{cosA} \right) \left( \dfrac{tan^2A+1}{tanA} \right) \\\\

\bullet \bf \ 1-sin^2A = cos^2A\\\\\bullet \ 1-cos^2A = sin^2A \\\\\bullet \ tan^2A+1 = sec^2A

          = \sf \dfrac{cos^2A}{sinA} \times \dfrac{sin^2A}{cosA}\times \dfrac{sec^2A}{tanA} \\\\= cosAsinA \times \dfrac{sec^2A}{tanA}

\bullet \bf \ sec^2A = \dfrac{1}{cosA} \\\\\bullet \ tanA = \dfrac{sinA}{cosA}

           = \sf cosA sinA \times \dfrac{1}{cos^2A} \times \dfrac{cosA}{sinA} \\\\= \dfrac{cosAsinA}{cosAsinA} \\\\= 1 \\\\= R.H.S

Hence proved.


Anonymous: Perfect :)
Similar questions