Math, asked by harleen4022, 6 hours ago

(cosec A -sin A )×(secA-cosA) ×(tanA+cotA)​

Answers

Answered by Sen0rita
13

 \sf \underline{ \bigstar \: Solution \:  : }

 \:

 \sf:\implies\: (cosecA - sinA) \: (secA - cosA) \: (tanA +cotA)

 \:

 \sf :  \implies \: \left(\dfrac{1}{sinA}  - sinA \right) \:  \left(  \dfrac{1}{cosA}  - cosA\right) \:  \left(   \dfrac{sinA}{cosA}  +  \dfrac{cosA}{sinA} \right)

 \:

 \sf :  \implies \:  \dfrac{(1 -  {sin}^{2}A) }{sinA}   \:  \dfrac{(1 -  {cos}^{2}A) }{cosA} \:   \left( \dfrac{sin {}^{2} A +  cos {}^{2} A }{ {cos}A   \: {sin} A}  \right)

 \:

 \sf :  \implies \:  \dfrac{(cos {}^{2}A )}{sinA}  \:  \dfrac{(sin {}^{2}A )}{cos}  \:  \dfrac{1}{cosA \: sinA}

 \:

 \sf :  \implies \:   \cancel\dfrac{cosA \: sinA}{cosA \: sinA}

 \:

 \sf :  \implies \: 1

 \:

 \sf \therefore \underline{Hence ,\: the \: solution \: is \:  \bold{1}.}

Similar questions