(cosec A-sinA) (secA-cosA)=1/tanA+cotA
Answers
Answered by
1
We know, cosec A = 1/sinA
and sec A = 1/cos A
Substituting these value in LHS,
LHS = (1/sinA - sinA) (1/cosA - cosA)
LHS = 1/sinA (1-sin^2 A) 1/cos A (1-cos^2 A)
Also, 1-sin^2 A = cos^2 A
and, 1-cos^2 A = sin^2 A
LHS = (cos^2 A/ sinA)(sin^2 A/ cos A)
By cancellation of comman factors,
LHS = cos A * sin A
Now, solving RHS
RHS = 1/tanA+cotA
tanA = sinA/cosA and cotA = cosA /sin A
On solving,
RHS = 1/sin^2 A+cos^2 A/cosA*sinA
sin^2 A + cos^2 A = 1
RHS = cosA*sinA
LHS = RHS
Similar questions