cosec a upon cosec a - 1 + cosec a upon cosec A + 1 is equal to 2 + 2 tan
square A
Answers
Answered by
2
Is cosec A + 1/ cosec A - 1 equal to (secA+tanA) ^2?
Answer
12
Follow
Request
More
4 ANSWERS

Ansh Singh
Answered Jul 10
We need to prove that ,
(cosecA+1)\(cosecA−1)=(secA+tanA)2(cosecA+1)\(cosecA−1)=(secA+tanA)2
L.H.S
cosec A = 1 / sin A
cosecA+1=>1/sinA+1cosecA+1=>1/sinA+1
=> (1+sinA)/sinA−−−(i)(1+sinA)/sinA−−−(i)
cosecA−1=>1/sinA−1cosecA−1=>1/sinA−1
=> (1−sinA)/sinA−−−(ii)(1−sinA)/sinA−−−(ii)
Divide (i) and (ii)
[(1+sinA)/sinA]/[(1−sinA)/sinA][(1+sinA)/sinA]/[(1−sinA)/sinA]
(1+sinA)/(1−sinA)(1+sinA)/(1−sinA)
Multiplying by ( 1+sin A ) in numerator and denominator
[(1+sinA)2]/(1−sin2A)[(1+sinA)2]/(1−sin2A)
1 - sin^2 A = cos ^ 2 A = ( cos A ) ^ 2
(1+sinA)2/(cosA)2(1+sinA)2/(cosA)2
a^m ÷ b^m = ( a ÷ b ) ^m
(1+sinA/cosA)2(1+sinA/cosA)2
1 / cos A = sec A
sin A / cos A = tan A
(secA+tanA)2(secA+tanA)2
L.H.S = R.H.S
Answer
12
Follow
Request
More
4 ANSWERS

Ansh Singh
Answered Jul 10
We need to prove that ,
(cosecA+1)\(cosecA−1)=(secA+tanA)2(cosecA+1)\(cosecA−1)=(secA+tanA)2
L.H.S
cosec A = 1 / sin A
cosecA+1=>1/sinA+1cosecA+1=>1/sinA+1
=> (1+sinA)/sinA−−−(i)(1+sinA)/sinA−−−(i)
cosecA−1=>1/sinA−1cosecA−1=>1/sinA−1
=> (1−sinA)/sinA−−−(ii)(1−sinA)/sinA−−−(ii)
Divide (i) and (ii)
[(1+sinA)/sinA]/[(1−sinA)/sinA][(1+sinA)/sinA]/[(1−sinA)/sinA]
(1+sinA)/(1−sinA)(1+sinA)/(1−sinA)
Multiplying by ( 1+sin A ) in numerator and denominator
[(1+sinA)2]/(1−sin2A)[(1+sinA)2]/(1−sin2A)
1 - sin^2 A = cos ^ 2 A = ( cos A ) ^ 2
(1+sinA)2/(cosA)2(1+sinA)2/(cosA)2
a^m ÷ b^m = ( a ÷ b ) ^m
(1+sinA/cosA)2(1+sinA/cosA)2
1 / cos A = sec A
sin A / cos A = tan A
(secA+tanA)2(secA+tanA)2
L.H.S = R.H.S
Answered by
5
Answer:
Step-by-step explanation:
Here is your answer
Attachments:
Similar questions
Hindi,
7 months ago
Computer Science,
7 months ago
Math,
1 year ago
Business Studies,
1 year ago
Chemistry,
1 year ago