Math, asked by Riyaa691, 10 months ago

(cosec-cos)^2 = 1-cos/1+cos Prove it

Answers

Answered by Skyllen
2

Correct Question

(cosec \theta - cot \theta) {}^{2}  =  \frac{1 - cos \theta}{1 + cos \theta} \\ \\

Solution

From LHS,

 \tt = (cosec \theta - cot \theta) {}^{2}  \\ \\ \tt = cosec {}^{2}  \theta \:  + cot {}^{2}  \theta - 2cosec \theta \: cot \theta \\ \\ \tt =  \frac{1}{sin {}^{2} \theta }  +  \frac{cos {}^{2} \theta}{sin {}^{2} \theta }  - 2  \times \frac{1}{sin \theta}  \times  \frac{cos \theta}{sin \theta}  \\ \\ \tt =  \frac{1 + cos {}^{2} theta }{sin {}^{2}  \theta}  -  \frac{2cos \theta}{sin {}^{2} \theta }  \\  \\ \tt = \frac{ 1 + cos {}^{2} \theta  - 2cos \theta}{sin {}^{2}  \theta}  \\  \\  \tt = \frac{(1 - cos  \theta) {}^{2} }{sin {}^{2}   \theta}  \\  \\ \tt =  \frac{(1 - cos \theta)(1 - cos \theta}{1 - cos {}^{2} \theta }  \\  \\ \tt =  \frac{(1 - cos \theta)(1 - cos \theta}{(1  + cos \theta)(1 - cos \theta}  \\  \\ \tt  =  \frac{1 - cos \theta}{1  + cos \theta}  = RHS

 \large \implies  {\boxed {\tt \blue {Hence \: Proved   }}} \\ \\

Used identities

 \tt \implies [Used \: in \: 2nd \:  step] \\ (a + b) {}^{2}  = a {}^{2}  + b {}^{2}  + 2ab  \\ \\ \tt \implies [used \: in \: 3rd \: step] \\ cosec {}^{2}  \theta =  \frac{1}{sin {}^{2} \theta }   \\ cot {}^{2}  \theta =  \frac{sin {}^{2} \theta}{cos {}^{2}  \theta}

Answered by InfiniteSoul
2

{\huge{\bold{\blue{\boxed{\bf{Correct\: Question}}}}}}

(cosec \theta - cot \theta) {}^{2}  =  \dfrac{1 - cos \theta}{1 + cos \theta}

{\huge{\bold{\pink{\bigstar{\boxed{\bf{Solution}}}}}}}

{\bold{\green{\boxed{\bf{LHS}}}}}

 \implies  (cosec \theta - cot \theta) {}^{2}  \\

  •  (x+y)^2 = x^2 + y^2 + 2xy

\implies cosec {}^{2}  \theta \:  + cot {}^{2}  \theta - 2cosec \theta \: cot \theta

  •  cosec^2\theta = \dfrac{1}{sin^2\theta}

  •  cot^2\theta = \dfrac{sin^2\theta}{cos^2\theta}

\implies \frac{1}{sin {}^{2} \theta }  +  \dfrac{cos {}^{2} \theta}{sin {}^{2} \theta }  - 2  \times \dfrac{1}{sin \theta}  \times  \dfrac{cos \theta}{sin \theta}  \\

\implies  \dfrac{1 + cos {}^{2} \theta }{sin {}^{2}  \theta}  -  \dfrac{2cos \theta}{sin {}^{2} \theta }

\implies \dfrac{ 1 + cos {}^{2} \theta  - 2cos \theta}{sin {}^{2}  \theta}

\implies \dfrac{(1 - cos  \theta) {}^{2} }{sin {}^{2}   \theta}

\implies\dfrac{(1 - cos \theta)(1 - cos \theta}{1 - cos {}^{2} \theta }

\implies  \dfrac{(1 - cos \theta)(1 - cos \theta}{(1  + cos \theta)(1 - cos \theta}

\implies\dfrac{1 - cos \theta}{1  + cos \theta}

{\bold{\green{\boxed{\bf{RHS}}}}}

\implies\dfrac{1 - cos \theta}{1  + cos \theta}

{\bold{\blue{\boxed{\bf{COMPARE}}}}}

\implies\dfrac{1 - cos \theta}{1  + cos \theta} = \dfrac{1 - cos \theta}{1  + cos \theta}

{\bold{\blue{\boxed{\bf{HencE\: Pr0ved}}}}}

...........hence proved

____________________________❤

THANK YOU ❤

Similar questions