Math, asked by khushigoswami60, 1 year ago

(cosec o - cot o)2 = 1-cos o / 1 + cos o​


khushigoswami60: hii

Answers

Answered by Anonymous
6

Heya!

Here is ur answer..

To proove:

(cosecΦ - cotΦ)² = 1-cosΦ/1+cosΦ

LHS :

= (cosecΦ - cotΦ)²

= (1/sinΦ-cosΦ/sinΦ)²

= (1-cosΦ/sinΦ)²

= (1-cosΦ)²/sinΦ²

= (1-cosΦ)²/1-cos²Φ

= (1-cosΦ)(1-cosΦ) / (1+cosΦ)(1-cosΦ)

= 1-cosΦ/1+cosΦ

RHS = 1-cosΦ/1+cosΦ

Therefore, LHS = RHS

Hence proved!

Identities used:

>> CosecΦ = 1/sinΦ

>> CotΦ = cosΦ/sinΦ

>> sin²Φ = 1-cos²Φ

>> a²-b² = (a+b)(a-b)

>> (a-b)² = (a-b)(a-b)

Hope it helps u..


khushigoswami60: hii
Anonymous: Hi
khushigoswami60: bolo
khushigoswami60: ji
Anonymous: kya?
muskanc918: well answered!
Anonymous: ty sista❤
Answered by muskanc918
21

\large\sf{\underline{Question:}}

\large\sf{Prove\:{( \cosec\:\theta -  \cot\:\theta) }^{2}  =  \frac{1 - \cos \: \theta}{1 + \cos\:\theta }   }

\large\sf{\underline {Proof:}}

\large\sf{\underline{\star{L.H.S.-}}}

\large\sf{={( \cosec\:\theta -  \cot\:\theta) }^{2}}

\large\sf{   ={ ( \frac{1}{ \sin\:\theta }  -  \frac{ \cos\:\theta }{ \sin} )\:  \:  }^{2} \:\theta  }

\large\sf{=   \frac{{(1 -  \cos \:\theta)}^{2} }{{ \sin  } ^{2} \:\theta}}

\large\sf{  =  \frac{ {(1 -  \cos)}^{2} \:\theta }{ { \sin}^{2} \theta }   }

\large\sf{  = \frac{ {(1 -  \cos \:\theta )}^{2} }{ 1 -  { \cos }^{2}  \theta }  }

\large\sf{   = \frac{ {(1 -  \cos \:\theta )}^{2} }{   {1}^{2}  -  { \cos }^{2}  \theta}  }

\large\sf{  = \frac{ {(1 -  \cos \:\theta )}^{2}}{(1 +  \cos\:\theta  )(1 -  \cos  \:\theta )}   }

\large\sf{=\frac{ (1 -  \cos \:\theta )}{(1 +  \cos \:\theta)}   }

\large\sf{Since,L.H.S.=R. H. S. }

\large\sf{Hence,\:proved.}


Anonymous: Flawless!
muskanc918: tysm⭐⭐✨✨
Similar questions