(cosec o - cot o)2 = 1-cos o / 1 + cos o
khushigoswami60:
hii
Answers
Answered by
6
Heya!
Here is ur answer..
To proove:
(cosecΦ - cotΦ)² = 1-cosΦ/1+cosΦ
LHS :
= (cosecΦ - cotΦ)²
= (1/sinΦ-cosΦ/sinΦ)²
= (1-cosΦ/sinΦ)²
= (1-cosΦ)²/sinΦ²
= (1-cosΦ)²/1-cos²Φ
= (1-cosΦ)(1-cosΦ) / (1+cosΦ)(1-cosΦ)
= 1-cosΦ/1+cosΦ
RHS = 1-cosΦ/1+cosΦ
Therefore, LHS = RHS
Hence proved!
Identities used:
>> CosecΦ = 1/sinΦ
>> CotΦ = cosΦ/sinΦ
>> sin²Φ = 1-cos²Φ
>> a²-b² = (a+b)(a-b)
>> (a-b)² = (a-b)(a-b)
Hope it helps u..
Answered by
21
Similar questions