Cosec -sin=a3 and sec-cos =b3 prove that a2b2 (a2+b2)=1
Answers
Answered by
1
: 1/sinθ - sinθ = a^3
(1 - sin²θ)/sinθ = a^3
cos²θ / sinθ = a^3
similarly
sin²θ / cosθ = b^3
then
a^4 b^2 + a^2 b^4
= [cos²θ/sinθ]^(4/3) [sin²θ / cosθ]^(2/3) + [cos²θ/sinθ]^(2/3) [sin²θ / cosθ]^(4/3)
= (cosθ)^(8/3) / (cosθ)^(2/3) + (sinθ)^(8/3) / (sinθ)^(2/3)
= cos²θ + sin²θ
= 1
§
Attachments:
Similar questions