Math, asked by dj12387, 10 months ago

Cosec theeta+cottheeta=p then find costheeta in terms of p

Answers

Answered by Anonymous
15

Solution

  cosec \theta + cot \theta = p

 \implies  \dfrac{1}{sin \theta} +  \dfrac{cos \theta}{sin \theta}  = p

[ Because cosecθ = 1/sinθ and cotθ = cosθ/sinθ ]

 \implies  \dfrac{1 + cos \theta}{sin \theta}  = p

Squaring on both sides

 \implies  \bigg( \dfrac{1 + cos \theta}{sin \theta}  \bigg)^{2}  = (p)^{2}

 \implies \dfrac{(1 + cos \theta)^{2} }{sin^{2}  \theta}   = p^{2}

 \implies \dfrac{ {1}^{2}  + cos^{2}  \theta + 2(1)(cos \theta)}{sin^{2}  \theta}   = p^{2}

[ Because (x + y)² = x² + y² + 2xy ]

 \implies \dfrac{ 1 + cos^{2}  \theta + 2cos \theta}{1 - cos^{2}  \theta}   = p^{2}

[ Becaus sin²θ = 1 - cos²θ ]

\implies 1 + cos^{2}  \theta + 2cos \theta  =  {p}^{2} (1 - cos^{2}  \theta )

\implies 1 + cos^{2}  \theta + 2cos \theta  =  {p}^{2}  -  {p}^{2} cos^{2}  \theta

\implies  {p}^{2}cos^{2} \theta +  cos^{2}  \theta + 2cos \theta + 1 -  {p}^{2}   =  0

\implies   ({p}^{2} +1) cos^{2} \theta+ 2cos \theta + 1 -  {p}^{2}   =  0

Now it is in the form of a quadratic equation ax² + bx + c = 0

Comparing with ax² + bx + c = 0 we get,

  • a = p² + 1
  • b = 2
  • c = 1 - p²

Discriminant = b² - 4ac

= 2² - 4(p² + 1)(1 - p²)

= 4 - 4[ (p² + 1){ - ( p² - 1) } ]

= 4 + 4(p² + 1)(p² - 1)

= 4 + 4(p^4 - 1)

= 4(1 + p^4 - 1)

= 4p^4

By using Quadratic formula

 \boxed{  x =  \dfrac{ - b \pm \sqrt{ {b}^{2}  - 4ac} }{2a} }

 \implies cos  \theta=  \dfrac{ - b \pm \sqrt{ {b}^{2}  - 4ac} }{2a}

 \implies cos  \theta=  \dfrac{ - 2 \pm \sqrt{4 {p}^{4} } }{2( {p}^{2} + 1) }

 \implies cos  \theta=  \dfrac{ - 2 \pm \sqrt{(2 {p}^{2} )^{2}  } }{2({p}^{2} + 1)}

 \implies cos  \theta=  \dfrac{ - 2 \pm 2 {p}^{2} }{2({p}^{2} + 1)}

 \implies cos  \theta=  \dfrac{ - 2  +  2 {p}^{2} }{2({p}^{2} + 1)}  \quad or  \quad cos  \theta=  \dfrac{ - 2   -   2 {p}^{2} }{2({p}^{2} + 1)}

 \implies cos  \theta=  \dfrac{ 2(- 1  +   {p}^{2}) }{2({p}^{2} + 1)}  \quad or  \quad cos  \theta=  \dfrac{2( - 1   -    {p}^{2} )}{2({p}^{2} + 1)}

 \implies cos  \theta=  \dfrac{{p}^{2}  - 1}{{p}^{2} + 1}  \quad or  \quad cos  \theta=  \dfrac{    -   ( {p}^{2} + 1) }{{p}^{2} + 1}

 \implies cos  \theta=  \dfrac{{p}^{2}  - 1}{{p}^{2} + 1}  \quad or  \quad cos \theta = - 1

[ Ignoring cosθ = - 1 as cotθ = undefined and cosecθ = undefined ]

 \implies \boxed{ cos  \theta=\dfrac{{p}^{2}  - 1}{{p}^{2} + 1}}

Hence, value of cosθ is (p² - 1)/(p² + 1).

Answered by Sharad001
110

Question :-

if \:  \csc \:  \theta +  \cot \:  \theta = p \:  \\  \\ \sf{ find \:  \cos \:  \theta \: in \: terms \: of \: p} \\

Answer :-

 \boxed{ \cos  \:  \theta =  \frac{p^{2}-1}{p^{2}+1} }

Step - by - step explanation :-

Given that ,

  \rightarrow \:  \csc \:  \theta +  \cot \:  \theta = p \\  \\  \rightarrow \:  \csc \:  \theta = p -  \cot \:  \theta \\  \\  \sf{squaring \: on \:both \: sides} \\  \\  \rightarrow \:  { \csc}^{2}  \theta =  {p}^{2}  +  { \cot}^{2}  \theta - 2p \cot \:  \theta \\  \\  \rightarrow \:  { \csc}^{2}  \theta -  { \cot}^{2}  \theta =  {p}^{2}  - 2p \cot \:  \theta \\  \\  \rightarrow \:  {p}^{2}  - 2p \cot \:  \theta = 1 \:  \:  \:  \:  \\  \\  \rightarrow \:  {p}^{2}  - 2p \:   \bigg(\frac{ \cos  \: \theta}{sin \:  \theta}  \bigg) = 1 \:  \: ...(1) \\  \\  \sf{now \: we \: take \:   } \\  \\  \rightarrow \:  \csc \:  \theta +  \cot \:  \theta = p \\  \\  \rightarrow \:  \frac{ 1 +  \cos \:  \theta}{ \sin \:  \theta}  = p \\  \\  \rightarrow \:  \sin \:  \theta =  \frac{1+ \cos \:\theta}{p}  \:  \:  \: .....(2)

Substitute the value from.eq.(2) in (1)

After this step ,refer to the attachment.

Attachments:
Similar questions