Math, asked by SumitKumarSoy, 3 months ago

(cosec theta + 1/ cot theta)² = cosec theta+ 1/ cosec theta- 1

Answers

Answered by itzsecretagent
215

\underline{\underline{\maltese\: \: \textbf{\textsf{Question}}}}

 \sf ({{cosec \theta  - }{cot  \theta})}² =  \frac{1 - cos  \theta}{1 + cos \theta}

\underline{\underline{\maltese\: \: \textbf{\textsf{Answer}}}}

LHS

\sf ({{cosec \theta  - }{cot  \theta})}²

 \begin{gathered} \sf \longrightarrow(\frac{1}{sin\theta}-\frac{cos\theta}{sin\theta}\big)^{2}\end{gathered}

 \longrightarrow \sf \large  ({\frac{ {1 - cos \theta} }{sin \theta}})^{2}

 \longrightarrow \sf  \large\frac{ ({1 - cos \theta})^{2} }{ ({sin \theta})^{2} }

 \longrightarrow \sf \large \frac{ ({1 - cos \theta})^{2} }{1 -  {cos}^{2} \theta }

 \longrightarrow \sf \large\frac{(1-cos\theta)(1-cos\theta)}{(1+cos\theta)(1-cos\theta)}

\begin{gathered} \longrightarrow \sf \frac{1-cos\theta}{1+cos\theta}\end{gathered}

=RHS

Additional Information :-

\boxed{ \sf\: \red{ sin(x + y) = sin xcosy + sinycosx}}

\boxed{ \sf \red{ sin(x - y) = sinxcosy - sinycosx} }

\boxed{ \sf \red{cos(x + y) = cosxcosy - sinxsiny}}

\boxed{ \sf \red{ cos(x - y) = cosxcosy + sinxsiny}}

\boxed{ \sf \red{ \: tan(x + y) = \dfrac{tanx + tany}{1 - tanx \: tany}}}

\boxed{ \sf \red{ tan(x - y) = \dfrac{tanx - tany}{1 + tanx \: tany}}}

\boxed{ \sf \red{ cot(x + y) = \dfrac{cotxcoty - 1}{coty + cotx}}}

\boxed{ \sf\red{ {sin}^{2} x - {sin}^{2} y = sin(x + y)sin(x - y)}}

\boxed{ \sf \red{ {cos}^{2} x - {sin}^{2} y = cos(x + y) \: cos(x - y)}}

Similar questions