cosec theta-cot theta = 3 then the value of sin theta
Answers
Answered by
0
Step-by-step explanation:
cosθ=
5
4
Step-by-step explanation:
\cscθ + \cotθ = 3 \: \: ...(given)cscθ+cotθ=3...(given)
\cotθ = 3 - \cscθcotθ=3−cscθ
Squaring both sides,
\cot^{2} θ = {(3 - \cscθ) }^{2} cot
2
θ=(3−cscθ)
2
\cot^{2}θ = 9 - 6 \cscθ + { \csc }^{2} θcot
2
θ=9−6cscθ+csc
2
θ
\cot^{2} θ - \csc^{2} θ = 9 - 6 \cscθcot
2
θ−csc
2
θ=9−6cscθ
- 1 = 9 - 6 \cscθ−1=9−6cscθ
6 \cscθ = 106cscθ=10
\cscθ = \frac{5}{3} cscθ=
3
5
\sinθ= \frac{3}{5} sinθ=
5
3
∴ \cosθ = \frac{4}{5} ∴cosθ=
5
4
Answered by
1
Answer:
Sin theta = 3/5
hope it helps you❤
Similar questions