Math, asked by Anonymous, 7 months ago

Cosec theta +cot theta=k then prove that cos theta =\frac{k^{2}-1}{k^{2}+1}

Answers

Answered by EnchantedBoy
9

Step-by-step explanation:

Cosec∅+cot∅=k→(1)

cosec²∅-cot²∅=1

(cosec∅+cot∅)(cosec∅-cot∅)=1

k(cosec∅-cot∅)=1

cosec∅-cot∅=\frac{1}{k}→(2)

add equation (1) & (2),

cosec∅+cot∅=k

cosec∅-cot∅=\frac{1}{k}

-------------------------------

2cot∅=k-\frac{1}{k}

2cot∅=\frac{k²-1}{k}

cot∅=\frac{k²-1}{2k}

Then,

cosec∅+cot∅=k

cosec∅-cot∅=\frac{1}{k}

-----------------------------

2cosec∅=k+\frac{1}{k}

2cosec∅=\frac{k²+1}{k}

cosec∅=\frac{k²+1}{2k}

thus,

cosec∅=sin∅

sin∅={k²+1}{2k}

then,

cot∅=\frac{cos∅}{sin∅}

\frac{k²-1}{2k}=\frac{\frac{cos∅}{k²+1}}{2k}

cos∅=\frac{k²-1}{2k}-\frac{2k}{k²+1}

Here, both 2k gets cancel

\frac{k²-1}{k²+1}

Hence proved

Answered by EnchantedGirl
33

Given:-

\\

❥ cosec θ + cot θ = k

\\

To prove :-

\\

❥ cos θ = k² - 1 / k² + 1

\\

Proof:-

\\

We know ,

❥ cosec θ = 1/sinθ  & cotθ=cosθ/sinθ

\\

Given ,

➥ cosec θ + cot θ= k

\\

➥ 1/sin θ+cos θ/sin θ=k

\\

➥1 + cos θ /sin θ = k

\\

➥1 + cos θ = k sin θ

\\

Squaring on both sides :

\\

➥(1+ cos θ)² = k²sin²θ

\\

➥(1+cos θ)² = k²(1- cos²θ)

\\

➥(1+cos θ)(1+cos θ)=k²(1+cosθ)(1-cosθ)

\\

➥1 + cos θ = k²( 1- cos θ)

\\

➥1 + cos θ = k²- k²cosθ

\\

➥ 1 + ( 1+k² )cos  = k²

\\

➥ (1+k²)cos θ = k² - 1

\\

➥cos θ= k²-1 / k²+1

\\

\boxed{\pink{\sf cos\theta =k^{2} -1 / k^2 +1 }}

\\

Hence  proved !

\\

___________________________

Similar questions