Math, asked by Rhythmgandhi, 3 months ago

cosec theta -cot theta whole square =1- cos theta / 1 +cos theta

pls tell

Attachments:

Answers

Answered by ckaleka042
1

Answer:

Step-by-step explanation :

Attachments:
Answered by Anonymous
36

 {\large{\maltese}} \:  \:  \:  \:  \: { \underline{ \underline{\bf{\Large{Solution : }}}}}\\ \\

 \dashrightarrow \:  \:  \:  \sf \frac{1 -  \cos \theta}{1 +  \cos \theta}  \\  \\

\dashrightarrow \:  \:  \:  \sf \frac{(1 -  \cos \theta)(1  -   \cos \theta)}{(1 +  \cos \theta)(1 -  \cos \theta)}  \\  \\

\dashrightarrow \:  \:  \:  \sf \frac{{ \big(1 -  \cos \theta \big)}^{2} }{ \big(1 - { \cos}^{2} \theta \big) }  \\  \\

\dashrightarrow \:  \:  \:  \sf \frac{1 +   { \cos}^{2} \theta - 2 \cos \theta }{ { \sin}^{2} \theta }  \\  \\

\dashrightarrow \:  \:  \:  \sf  \frac{1}{ { \sin}^{2}  \theta}  +  \frac{ { \cos}^{2} \theta }{ { \sin}^{2}  \theta}  -  \frac{2 \cos \theta}{ { \sin}^{2} \theta }  \\  \\

\dashrightarrow \:  \:  \:  \sf  { \cosec}^{2}  \theta +  { \cot}^{2}  \theta - 2 \cot \theta \cosec \theta \\  \\

\dashrightarrow \:  \:  \:  {\bf { \bigg( \cosec \theta -  \cot \theta \bigg)}^{2} }\:  \:  \:  \:  \:  \:  \:  \:  \:  \:{ \color{skyblue}{Hence\:\:Proved}}   \\  \\

Similar questions