cosec theta equals to √2,then find other five trigonometric ratios and then find the value of ratios.
Answers
Step-by-step explanation:
Given :-
Cosec θ = √2
To find :-
Find the other trigonometric ratios ?
Solution :-
Method -1 :-
Given that
Cosec θ = √2
=> Hypotenuse / Opposite side to θ = √2
=> Hypotenuse / Opposite side to θ = √2/1
Let Hypotenuse = √2 k
Opposite side = 1k = k
Consider a right angled triangle ABC ,
We have , angle B = 90° , angle A = θ
and BC = k and AC = √2 k
By Pythagoras Theorem,
=> AC² = AB²+BC²
=> AB² = AC² - BC²
=> AB² = (√2k)²-(k)²
=> AB² = 2k²-k²
=> AB² = k²
=> AB =√k²
=> AB = k
Therefore, Adjacent side to θ = k
I) Sin θ = Opposite side to θ /Hypotenuse
=> Sin θ = BC/ AC
=> Sin θ = k/ √2 k
Therefore, Sin θ = 1/√2
ii) Cos θ=Adajacent side to θ/Hypotenuse
=> Cos θ = AB/ AC
=> Cos θ = k/ √2 k
Therefore, Cos θ = 1/√2
iii) Tan θ = Opposite side to θ/ Adjacent side to θ
=> Tan θ = BC/AB
=> Tan θ = 1k/1k
Therefore Tan θ = 1
iv) Sec θ =Hypotenuse/Adjacent side to θ
=> Sec θ = AC/ AB
=> Sec θ = √2k/k
Therefore, Sec θ = √2 = 1.4 units
v) Cot θ = Adjacent side to θ/Opposite side to θ
=> Cot θ = AB/BC
=> Cot θ = k/k
Therefore, Cot θ = 1
Method-2:-
Given that
Cosec θ =√2
1/Sin θ = √2
=> Sin θ = 1/√2 = 0.7 units
On squaring both sides then
=> Sin² θ = (1/√2)²
=> Sin² θ = 1/2
=> 1-Sin² θ = 1-(1/2)
=> 1-Sin² θ= 1/2
=> Cos² θ = 1/2
=> Cos θ = √(1/2)
=> Cos θ = 1/√2
=> Cos θ = (1/√2)×(√2/√2)
=> Cos θ = √2/(√2×√2)
=> Cos θ = √2/2
=> Cos θ = 1.414.../2
=> Cos θ = 0.702...
=> Cos θ = 0.7 units
We know that
Tan θ = Sin θ/ Cos θ
=> Tan θ =( 1/√2)/(1/√2)
Tan θ = 1
We know that
Cot θ = 1/ Tan θ
=> Cot θ = 1/1
Cot θ = 1
Cos θ = 1/√2
We know that
Sec θ = 1/Cos θ
=> Sec θ = 1/(1/√2)
Sec θ = √2
=> Sec θ = 1.414...
Sec θ = 1.4 units
Answer:-
i)Sin θ = 1/√2 = 0.7 units
ii)Cos θ = 1/√2 = 0.7 units
ii)Tan θ = 1
iv)Cot θ = 1
v)Sec θ = √2 = 1.4 units
Used formulae:-
Sin θ = Opposite side to θ /Hypotenuse
Cos θ = Adajacent side to θ / Hypotenuse
Tan θ=Opposite side to θ/Adjacent side to θ
Cot θ = Adjacent side to θ/Opposite side to θ
Sec θ =Hypotenuse/Adjacent side to θ
Cosec θ =Hypotenuse/Opposite side to θ
Cosec θ = 1 / Sin θ
Sec θ = 1 / Cos θ
Tan θ = Sin θ / Cos θ
Cot θ = 1 / Tan θ
Sin² A + Cos² A = 1
Pythagoras Theorem:-
In a right angled triangle The square of the hypotenuse is equal to the sum of the other two sides .
√2 = 1.414...