Math, asked by prathyush71, 1 year ago

cosec theta equals to a + 1 / 4 a, then cosec theta + cot theta equals to​

Answers

Answered by officialrohitsharma
3

answer of your question

Attachments:
Answered by sandy1816
0

given

cosec \theta = a +  \frac{1}{4a}

we know

 {cot}^{2}  \theta =  {cosec}^{2} \theta - 1  \\ \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  = ( {a +  \frac{1}{4a} })^{2}  - 1 \\  \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: =  {a}^{2}  +  \frac{1}{16 {a}^{2} }  +  \frac{1}{2}  - 1 \\  \\  =  {a}^{2}   +  \frac{1}{16 {a}^{2} }  -  \frac{1}{2}

 \therefore \:  \: cot \theta = ± \sqrt{( {a -  \frac{1}{4a} })^{2} }  \\  \\  = ±(a -  \frac{1}{4a} )

Now

cosec \theta + cot \theta \\  \\  = a +  \frac{1}{4a}  + a -  \frac{1}{4a}  \\  \\  = 2a

and

cot \theta + cosec \theta \\  \\  =  - a +  \frac{1}{4a}  + a +  \frac{1}{4a}  \\  \\  =  \frac{1}{2a}

Similar questions