cosec theta minus cot theta ka whole square equals to 1 minus cos theta upon 1 + cos theta
Answers
Answered by
4
(cosecA - cotA)^2 = 1-cosA/1+cosA
Lhs-
(1/sinA - cosA/sinA) ^2
(1-cosA/sinA)^2
(1-cosA)^2/ sin^2A
1+cos^2A -2cosA/sin^2A
Rhs-
1-cosA/1+cosA X 1-cosA/1-cosA
(1-cosA)^2/ 1-cos^2A
1+cos^2A-2cosA/sin^2A
LHS=RHS
Hence proved !
Answered by
2
Answer:
Step-by-step explanation:
(Cosecx-cot)^2_(1/sinx-cosx/sinx)^2_(1-cosx/sinx)^2_sin^2/sin^2_1
Similar questions