Math, asked by einstien5968, 1 year ago

Cosec theta(sec theta -1)-cot theta (1-cos theta)=tan theta-sin theta

Answers

Answered by ashishks1912
11

GIVEN :

The equation is cosec\theta(sec\theta-1)-cot\theta(1-cos\theta)=tan\theta-sin\theta

TO PROVE :

The equality of the given equation.

SOLUTION :

Given that the equation is cosec\theta(sec\theta-1)-cot\theta(1-cos\theta)=tan\theta-sin\theta

We have to prove the given equation cosec\theta(sec\theta-1)-cot\theta(1-cos\theta)=tan\theta-sin\theta is true

That is to prove that LHS=RHS

Now taking the LHS,

cosec\theta(sec\theta-1)-cot\theta(1-cos\theta)

By using the properties:

i) cosecx=\frac{1}{sinx}

ii) secx=\frac{1}{cosx} and

iii) cotx=\frac{cosx}{sinx}

\frac{1}{sin\theta}(\frac{1}{cos\theta}-1)-\frac{cos\theta}{sin\theta}(1-cos\theta)}

=\frac{1}{sin\theta cos\theta}-\frac{1}{sin\theta}-\frac{cos\theta}{sin\theta}+\frac{cos^2\theta}{sin\theta}

=\frac{1-cos\theta-cos^2\theta+cos^3\theta}{sin\theta cos\theta}

By using the formula:

sin^2x=1-cos^2x

=\frac{sin^2\theta-cos\theta(1-cos^2\theta)}{sin\theta cos\theta}

=\frac{sin^2\theta-cos\theta(sin^2\theta)}{sin\theta cos\theta}

=\frac{sin^2\theta(1-cos\theta)}{sin\theta cos\theta}

=\frac{sin\theta(1-cos\theta)}{cos\theta}

=\frac{sin\theta-sin\theta cos\theta}{cos\theta}

=\frac{sin\theta}{cos\theta}-\frac{sin\theta cos\theta}{cos\theta}

By using the property:

tanx=\frac{sinx}{cosx}

=tan\theta-sin\theta=RHS

∴ LHS=RHS

cosec\theta(sec\theta-1)-cot\theta(1-cos\theta)=tan\theta-sin\theta

Hence proved.

Answered by pranjalconvent04
6

Answer:

please mark me brainlist

Step-by-step explanation:

ans is in attachment

Attachments:
Similar questions