Math, asked by ANMOL2611, 1 year ago

Cosec theta - sin theta=a 3, sec theta - cos theta= b 3 , a2b2(a2+b2)=1

Answers

Answered by ranjanasengupta
1

Consider cosec theta - sin theta = a³

⇒ !/sin theta - sin theta = a³

⇒ 1 - sin² theta/sin theta = a³

cos² theta/ sin theta = a³ → (1)

⇒ (cos² theta/sin theta)²/³ = (a³)²/³

⇒ cos⁴/³ theta/sin²/³ theta = a² → (2)

Now consider, sec theta - cos theta = b³

⇒ 1/cos theta - cos theta = b³

⇒ 1 - cos²theta/cos theta = b³

⇒ sin² theta/cos theta = b³ → (3)

⇒ (sin² theta/cos theta)²/³ = (b³)²/³

⇒ sin⁴/³ theta/cos²/³ theta = b² → (4)

Multiply (2) and (4), we get

(cos⁴/³ theta/sin²/³ theta)× (sin⁴/³ theta/cos²/³ theta) = a²b² → (5)

a² + b² =(cos⁴/³ theta/sin²/³ theta) + (sin⁴/³ theta/cos²/³ theta)

(cos² theta + sin² theta)/(sin²/³ theta cos²/³ theta)

= 1/sin²/³ theta cos²/³ theta

Consider, a²b²(a²+b²) = (sin²/³ theta cos²/³ theta) × 1/sin²/³ theta cos²/³ theta

= 1 Hence proved.


Answered by ravindrabansod26
5

Answer:

just seee the above solve ans in photos

Step-by-step explanation:

hope it will help you plese like and give rate and follow me plese and make my ans as a brianlist

Attachments:
Similar questions