Math, asked by ARTEMIS98, 9 months ago

(cosec theta - sin theta)( sec theta- cos theta)= 1/ tan theta +cos theta
prove this ​

Answers

Answered by Anonymous
3

\bold\blue{Correct \ Question}

\bold{(cosec \ \theta-sin \ \theta)(sec \ \theta-cos \ \theta)=sin \ \theta \ . \ cos \ theta}

\bold{prove \ this}

\bold\red{\underline{\underline{Answer:}}}

\bold\pink{To \ prove:}

\bold{(cosec \ \theta-sin \ \theta)(sec \ \theta-cos \ \theta)=sin \ \theta \ . \ cos \ \theta}

\bold\green{\underline{\underline{Proof:}}}

\bold{L.H.S.=(cosec \ \theta-sin \ \theta)(sec \ \theta-cos \ \theta)}

\bold{(cosec=\frac{1}{sin})}

\bold{(sec=\frac{1}{cos})}

\bold{Trigonometric \ ratio}

\bold{=(\frac{1}{sin \ \theta}-sin \ \theta)(\frac{1}{cos \ \theta}-cos \ \theta)}

\bold{=(\frac{1-sin^{2}\theta}{sin \ \theta})(\frac{1-cos^{2}\theta}{cos \ \theta})}

\bold{(1-sin^{2}\theta=cos^{2}\theta)}

\bold{1-cos^{2}\theta=sin^{2}\theta}

\bold{... Trigonometric \ identity}

\bold{=(\frac{cos^{2}\theta}{sin \ \theta})(\frac{sin^{2}\theta}{cos \ theta})}

\bold{=(cos \ \theta \ . \ cot \ \theta)(sin \ \theta \ . \ tan \ \theta}

\bold{cot=\frac{1}{tan}}

\bold{Trigonometric \ ratio}

\bold{=(cos \ \theta \ . \ \frac{1}{tan \ \theta})(sin \ theta \ . \ tan \ \theta)}

\bold{=sin \ \theta.cos \ \theta}

\bold{=R.H.S}

\bold{Hence \ proved}

\bold\purple{\tt{(cosec \ \theta-sin \ \theta)(sec \ \theta-cos \ \theta)=sin \ \theta \ . \ cos \ \theta}}

Similar questions