Math, asked by Premkumarobara2, 3 months ago

(cosec theta -sin theta )(sec theta-cos theta)=1/tan theta+ cot theta​

Answers

Answered by mathdude500
4

Identities Used -

  \longmapsto \: \begin{gathered}\:{\underline{\boxed{\bf{\blue{{\tt \: \: cot\theta \:  =  \: \dfrac{cos \: \theta}{sin \: \theta} }}}}}} \\ \end{gathered}

  \longmapsto \: \begin{gathered}\:{\underline{\boxed{\bf{\blue{{\tt \: \: tan\theta \:  =  \: \dfrac{cos \: \theta}{sin \: \theta} }}}}}} \\ \end{gathered}

  \longmapsto \: \begin{gathered}\:{\underline{\boxed{\bf{\blue{{\tt \: \: sec\theta \:  =  \: \dfrac{1}{cos \: \theta} }}}}}} \\ \end{gathered}

  \longmapsto \: \begin{gathered}\:{\underline{\boxed{\bf{\blue{{\tt  \: \: cosec\theta \:  =  \: \dfrac{1}{sin \: \theta} }}}}}} \\ \end{gathered}

  \longmapsto \: \begin{gathered}\:{\underline{\boxed{\bf{\blue{{\tt  {sin}^{2} \theta +  {cos}^{2}\theta = 1  }}}}}} \\ \end{gathered}

Prove that -

 \bf \: (sec\theta - cos\theta)(cosec\theta - sin\theta) = \dfrac{1}{tan\theta + cot\theta}

Solution

Solution Consider

 \longmapsto \:  \bf \: LHS

 \bf \: (sec\theta - cos\theta)(cosec\theta - sin\theta)

\rm :\implies\:(\dfrac{1}{cos\theta}  -cos\theta )(\dfrac{1}{sin\theta}  - sin\theta)

\rm :\implies\:\dfrac{1 -  {cos}^{2}\theta }{cos\theta}  \times \dfrac{1 -  {sin}^{2}\theta }{sin\theta}

\rm :\implies\:\dfrac{ {cos}^{2} \theta}{sin\theta}  \times \dfrac{ {sin}^{2}\theta }{cos\theta}

\rm :\implies\:sin\theta \: cos\theta

Consider

 \longmapsto \:  \bf \: RHS

 \bf \: \dfrac{1}{tan\theta \:  +  \: cot\theta}

\rm :\implies\:\dfrac{1}{\dfrac{sin\theta}{cos\theta}  + \dfrac{cos\theta}{sin\theta} }

\rm :\implies\:\dfrac{1}{\dfrac{ {sin}^{2}\theta +  {cos}^{2}\theta  }{sin\theta \: cos\theta} }

\rm :\implies\:sin\theta \: cos\theta

\bf\implies \:LHS \:  =  \: RHS

\large{\boxed{\boxed{\bf{Hence, Proved}}}}

Additional Information:-

Relationship between sides and T ratios

  • sin θ = Opposite Side/Hypotenuse
  • cos θ = Adjacent Side/Hypotenuse
  • tan θ = Opposite Side/Adjacent Side
  • sec θ = Hypotenuse/Adjacent Side
  • cosec θ = Hypotenuse/Opposite Side
  • cot θ = Adjacent Side/Opposite Side

Reciprocal Identities

  • cosec θ = 1/sin θ
  • sec θ = 1/cos θ
  • cot θ = 1/tan θ
  • sin θ = 1/cosec θ
  • cos θ = 1/sec θ
  • tan θ = 1/cot θ

Co-function Identities

  • sin (90°−x) = cos x
  • cos (90°−x) = sin x
  • tan (90°−x) = cot x
  • cot (90°−x) = tan x
  • sec (90°−x) = cosec x
  • cosec (90°−x) = sec x

Fundamental Trigonometric Identities

  • sin²θ + cos²θ = 1
  • sec²θ - tan²θ = 1
  • cosec²θ - cot²θ = 1

Similar questions