Math, asked by ap452733, 9 months ago

( cosec theta - sin theta) ( sec theta - cos theta) ( tan theta + cot theta) = 1​

Answers

Answered by gameranujaspgmailcom
0

Step-by-step explanation:

(1+cotθ−cosecθ)(1+tanθ+secθ)=(1+cosθsinθ−1sinθ)(1+sinθcosθ+1cosθ)

=(sinθ+cosθ−1sinθ)(sinθ+cosθ+1cosθ)

=(sinθ+cosθ)2−12sinθcosθ

=sin2θ+cos2θ+2sinθcosθ−1sinθcosθ

=1+2sinθcosθ−1sinθcosθ

=2sinθcosθsinθcosθ

=2

Answered by Anonymous
3

Question:-

   \:  \bf \: ( \csc \theta  \:  -  \:  \sin\theta )( \sec\theta  -  \cos\theta)( \tan\theta  +  \cot \theta  = 1

Solution:-

  \bf \: ( \csc \theta  \:  -  \:  \sin\theta )( \sec\theta  -  \cos\theta)( \tan\theta  +  \cot \theta  = 1

Use some trigonometry identities

 \to \:  \bf \:  \csc( \theta)  =  \frac{1}{ \sin( \theta) }

 \to \:  \bf \:  \sec( \theta)  =  \frac{1}{ \cos( \theta) }

 \to \bf  \:  \tan( \theta)  =  \frac{ \sin( \theta) }{ \cos( \theta) }

 \to \bf  \:  \cot( \theta)  \:  =  \frac{ \cos( \theta) }{ \sin( \theta) }

 \to \bf  \:  \sin  {}^{2} ( \theta)  +  \cos {}^{2} ( \theta)  = 1

 \to \bf \:   \sin {}^{2} ( \theta)  = 1 -  \cos {}^{2} ( \theta)

 \bf \to  \:  \cos {}^{2} ( \theta)  = 1 -  \sin {}^{2} ( \theta)

By using this identities we get

 \bf \: ( \frac{1}{ \sin\theta  }  -  \sin \theta) ( \frac{1}{ \cos\theta  }  -  \cos\theta)( \frac{ \sin \theta }{ \cos \theta  }  +  \frac{ \cos \theta }{ \sin\theta } )

By taking LCM we get

 \bf \: ( \frac{1 -  \sin {}^{2}  \theta }{ \sin \theta} )( \frac{1 -  \cos {}^{2}  \theta }{ \cos \theta } )( \frac{ \sin {}^{2} \theta+  \cos {}^{2} \theta  }{ \sin \theta  \times  \cos \theta } )

 \bf \frac{ \cos {}^{2}  \theta }{ \sin \theta }  \times  \frac{ \sin  {}^{2}  \theta}{ \cos\theta}  \times  \frac{1}{ \sin\theta  \cos\theta}

 \bf \frac{  1}{ \sin \theta }  \times  \frac{ \sin  {}^{2}  \theta}{ 1}  \times  \frac{1}{ \sin\theta  }

 \bf \large \: 1

Hence proved

Similar questions