Math, asked by manrajaulakh24, 1 month ago

(cosec theta - sin theta) ( sec theta - cos theta) (tan theta +cot theta) is equal to

a)0
b)1
c)-1
d)none of these ​

Answers

Answered by Sauron
36

Answer:

Option b) 1

Step-by-step explanation:

(\cosec\theta -  \sin\theta) (\sec\theta - \cos\theta)(\tan\theta + \cot\theta)

We know that,

 \:  \:  \:  \:   \: \:  \cosec =  \dfrac{1}{\sin}

\longrightarrow \:( \frac{1}{\sin} \theta -  \sin\theta) (\sec\theta - \cos\theta)(\tan\theta + \cot\theta)

We know that,

 \:  \:  \:  \:   \: \:  \sec =  \dfrac{1}{\cos}

\longrightarrow \:( \frac{1}{\sin} \theta -  \sin\theta) ( \frac{1}{\cos} \theta - \cos\theta)(\tan\theta + \cot\theta)

We know that,

 \:  \:  \:  \:   \: \:  \tan =  \dfrac{\sin}{\cos}

 \:  \:  \:  \:   \: \:  \cot =  \dfrac{\cos}{\sin}

\longrightarrow \:( \frac{1}{\sin} \theta -  \sin\theta) ( \frac{1}{\cos} \theta - \cos\theta)( \frac{\sin}{\cos} \theta +  \frac{\cos}{\sin} \theta)

\longrightarrow \:( \frac{1 -  {\sin}^{2} \theta}{\sin\theta} ) ( \frac{1 -  {\cos}^{2}\theta}{\cos\theta} )( \frac{{\sin}^{2}\theta +  {\cos}^{2} \theta }{\cos\theta \: \sin\theta})

We know that,

 {\sin}^{2}\theta +  {\cos}^{2}\theta = 1

\longrightarrow \:\frac{ {\cos}^{2} \theta}{\sin\theta}  \times \frac{ {\sin}^{2}\theta}{\cos\theta}   \times  \frac{1}{\cos\theta \: \sin\theta}

\longrightarrow \:  {\cos} \theta\times {\sin}\theta  \times  \frac{1}{\cos\theta \: \sin\theta}

\longrightarrow \:  1

Therefore, answer is 1.

Answered by kinzal
44

Answer :-

(b) 1

Explanation :-

  •  \sf (cosec ∅ - sin ∅ ) (sec ∅ - cos∅ ) (tan ∅ + cot∅ ) \\

  • As we know that,

  •  \sf cosec ∅ = \frac{1}{sin∅} \\

  •  \sf sec∅ = \frac{1}{cos∅} \\

  •  \sf tan ∅ = \frac{sin∅}{cos∅} \\

  •  \sf cot ∅ = \frac{cos∅}{sin∅} \\

Now, put the values

  •  \sf (cosec ∅ - sin ∅ ) (sec ∅ - cos∅ ) (tan ∅ + cot∅ ) \\

  •  \sf \bigg(\frac{1}{sin∅} - sin∅ \bigg)  \bigg(\frac{1}{cos∅} - cos∅ \bigg) \bigg(\frac{sin∅}{cos∅}+  \frac{cos∅}{sin∅}  \bigg) \\

  •  \sf  \bigg( \frac{1 -  {sin}^{2} ∅ }{sin∅ }  \bigg) \bigg( \frac{ 1 -  {cos}^{2}∅  }{cos∅ }  \bigg) \bigg( \frac{ {sin}^{2} ∅ +  {cos}^{2} ∅  }{sin∅  \times cos∅ }  \bigg) \\

  • also we know that, sin² ∅ + cos²∅ = 1

  • sin²∅ = 1 - cos²∅

  • cos²∅ = 1 - sin² ∅

Hence,

  •  \sf \bigg( \frac{ {cos}^{2}∅ }{sin∅} \bigg) \bigg( \frac{ {sin}^{2} ∅}{cos∅}  \bigg) \bigg( \frac{ {sin}^{2}∅ +  {cos}^{2}  ∅}{sin∅ \times cos∅}  \bigg) \\

  •  \sf \bigg( \frac{ {cos}^{ \cancel2}∅ }{ \cancel{sin∅}} \bigg) \bigg( \frac{ {sin}^{ \cancel2} ∅}{ \cancel{cos∅}}  \bigg) \bigg( \frac{ {sin}^{2}∅ +  {cos}^{2}  ∅}{sin∅ \times cos∅}  \bigg) \\

  •  \sf  \cancel{cos∅ \times sin∅} \bigg( \frac{ {sin}^{2} ∅ +  {cos}^{2}∅ }{ \cancel{cos∅ \:  \: sin∅} } \bigg) \\

  •  \sf sin² ∅+ cos² ∅

  •  \sf = \fbox{ 1 }

For more information :-

  • Sin² ∅ + Cos² = 1
  • Sin² ∅ = 1 - Cos² ∅
  • Cos² ∅ = 1 - Sin² ∅

____________________

  • Sec² ∅ - Tan² ∅ = 1
  • Sec² ∅ = 1 + Tan² ∅
  • Tan² ∅ = 1 + Sec² ∅

____________________

  • Cosec² ∅ - Cot² ∅ = 1
  • Cosec² ∅ = 1 + Cot² ∅
  • Cot² ∅ = 1 + Cosec² ∅

____________________

I hope it helps you ❤️✔️

Similar questions