Math, asked by Ayushsharma5193, 1 year ago

( cosec theta - sin theta )(sec theta - cos theta )( tan theta + cot theta ) =1

Answers

Answered by Anonymous
189

HOPE THIS HELPS YOU ☺️

Attachments:
Answered by JeanaShupp
67

Answer with step-by-step explanation:

To prove: (cosec \theta - sin\theta)(sec\theta -cos\theta)(tan\theta+ cot\theta)=1

L.H.S

(cosec \theta - sin\theta)(sec\theta -cos\theta)(tan\theta+ cot\theta)\\\\\Rightarrow (\dfrac{1}{sin\theta}-sin\theta )(\dfrac{1}{cos\theta} -cos\theta)(tan\theta +\dfrac{1}{tan\theta})\\\\\Rightarrow (\dfrac{1-sin^2\theta}{sin\theta} )(\dfrac{1-cos^2\theta}{cos\theta})(\dfrac{1+tan^2\theta}{tan\theta} )

Now as we know

1- sin^2\theta= cos^2\theta , \\1-cos^2\theta=sin^2\theta ,\\1+tan^2\theta = sec^2\theta

Therefore

\Rightarrow (\dfrac{cos^2\theta}{sin\theta} )(\dfrac{sin^2\theta}{cos\theta} )(\dfrac{sec^2\theta}{tan\theta} )\\\\\Rightarrow (cos\theta )(sin\theta)(\dfrac{\dfrac{1}{cos^2\theta} }{\dfrac{sin\theta}{cos\theta} } )\\\\\\\Rightarrow (cos\theta )(sin\theta) \dfrac{1}{cos\theta sin\theta} =1

= R.H.S.

Hence proved

Similar questions