Math, asked by sankalp23, 1 year ago

cosec theta = x+1/4x prove that cosec + cot =2x

Answers

Answered by Anonymous
12
here is your answer please check and comment on it
Attachments:
Answered by sandy1816
0

Answer:

cosec \theta = x +  \frac{1}{4x}

we know

 {cot}^{2}  \theta =  {cosec}^{2} \theta - 1  \\ \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  = ( {x +  \frac{1}{4x} })^{2}  - 1 \\  \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: =  {x}^{2}  +  \frac{1}{16 {x}^{2} }  +  \frac{1}{2}  - 1 \\  \\  =  {x}^{2}   +  \frac{1}{16 {x}^{2} }  -  \frac{1}{2}

 \therefore \:  \: cot \theta = ± \sqrt{( {x-  \frac{1}{4x} })^{2} }  \\  \\  = ±(x -  \frac{1}{4x} )

Now

cosec \theta + cot \theta \\  \\  = x +  \frac{1}{4x}  + x -  \frac{1}{4x}  \\  \\  = 2x

Similar questions