Math, asked by Kalimdilepcha678, 1 day ago

Cosec(x) . Cot(2x)

Derivatives

Answers

Answered by getyourhatsinsummer
1

Answer:

∴ d y d x = d d x [ c o s e c x c o t x ] dydx=ddx[cosecxcotx] = ( d d x c o s e c x ) c o t x + c o s e c x d d x c o t x =(ddxcosecx)cotx+cosecxddxcotx = cot x ∙(− cot x cosec x) + cosec x (- cosec2x) = − cot2x cosec − cosec3x = −cosec x (cot2x + cosec2x)

Step-by-step explanation:

∴  d y d x = d d x [ c o s e c x c o t x ] dydx=ddx[cosecxcotx]  = ( d d x c o s e c x ) c o t x + c o s e c x d d x c o t x =(ddxcosecx)cotx+cosecxddxcotx  = cot x ∙(− cot x cosec x) + cosec x (- cosec2x)  = − cot2x cosec − cosec3x = −cosec x (cot2x + cosec2x)

Similar questions