(cosec x - cotx)^2 = 1 - cos x / 1 + cos x
Answers
Answered by
17
To Prove:
Take the LHS:
Using (a - b)² = a² + b² - 2ab we get:
In the RHS, all the terms are in terms of cosx, so let's try to express the equation we've got above in terms of cosx.
Substitute the following:
⇒ 1/cosec²x = sin²x
⇒ 1/cot²x = cos²x/sin²x
⇒ cosecx = 1/sinx
⇒ cotx = cosx/sinx
Here, let's apply (a - b)² = a² + b² - 2ab.
[a = 1 ; b = cosx]
Apply sin²x = 1 - cos²x.
Apply a² - b² = (a + b)(a - b).
Divide [1 - cosx] and [1 - cosx]².
LHS = RHS
Hence proved.
Similar questions