Math, asked by gvnravishankar, 10 months ago

cosec15+sec15 using formula​

Answers

Answered by Anonymous
10

CORRECT QUESTION:

  • Cosec15° + sec15°

SOLUTION:

 =  \csc15 \degree \:  +  \:  \sec15 \degree \:  \\  \\  =  \frac{1}{ \sin15 \degree \:  } \:   +  \:  \frac{1}{ \cos15 \degree \:  }  \\  \\  \therefore \:  \frac{ \cos15 \degree \:  +  \:  \sin15  \degree }{ \sin15 \degree \:  \times  \:  \cos15 \degree}

On multiplying 1/✔2 on numerator and denominator we get ,

 =  \frac{ \frac{1}{ \sqrt{2}  }  \cos15 \degree \:  +  \:  \frac{1}{ \sqrt{2} }  \sin15 \degree}{ \frac{1}{ \sqrt{2}  } \sin15 \degree \:  \times  \:  \frac{1}{ \sqrt{2} }   \cos15 \degree}

On numerator we will apply ,

sin A cos B+ cos A sin B = sin ( A+B ).

On denominator we will apply ,

2sin A × cosA = Sin2 A.

  =  \:  \frac{ \sin(45 + 15) }{ \frac{1}{2 \sqrt{2} } \sin30 \degree \:   }  \\  \\  =  \frac{2 \sqrt{2} \sin(60)  }{ \sin30 \degree}  \\  \\  =  \frac{2 \sqrt{2}   \: \times \:  \frac{ \sqrt{3} }{2}  }{ \frac{1}{2} }  \\  \\ =  2 \sqrt{6}  \\  \\  \therefore \:  \csc15 \degree \:  +  \sec15 \degree \:  = 2 \sqrt{6}

Similar questions