Cosec2(b+c/2)-tan2(a/2)=1
Answers
Answered by
32
This answer may help you Mark this answer as brainiest answer please
Attachments:
Krish85131:
Thanks
Answered by
24
In a Δ
sum of all angles=180°
a+b+c=180
b+c=180-a .................1
then in given statement taking LHS
=cosec²(b+c/2)-tan²(a/2)
substituting 1 in cosec²(b+c/2)
=cosec²(180/2-a/2)-tan²(a/2)
=cosec²(90-a/2)-tan²(a/2)
(identity cosec(90-Ф)=secФ)
then =sec²(a/2)-tan²(a/2)
(identity sec²Ф-tan²Ф=1)
so =1 ⇒ RHS
HENCE PROVED
:) Hope this helps!!!!!!!!!!
sum of all angles=180°
a+b+c=180
b+c=180-a .................1
then in given statement taking LHS
=cosec²(b+c/2)-tan²(a/2)
substituting 1 in cosec²(b+c/2)
=cosec²(180/2-a/2)-tan²(a/2)
=cosec²(90-a/2)-tan²(a/2)
(identity cosec(90-Ф)=secФ)
then =sec²(a/2)-tan²(a/2)
(identity sec²Ф-tan²Ф=1)
so =1 ⇒ RHS
HENCE PROVED
:) Hope this helps!!!!!!!!!!
Similar questions